=27 CYPRESS

P

Cypress Semiconductor

3901 North First Street

San Jose, CA 95134

Tel.: (800) 858-1810 (toll-free in the U.S.)
(408) 943-2600

WwWw.cypress.com

EZ-USB FX2

Technical Reference
Manual

Cypress Disclaimer Agreement

The information in this document is subject to
change without notice and should not be con-
strued as a commitment by Cypress Semicon-
ductor Corporation Incorporated. While
reasonable precautions have been taken,
Cypress Semiconductor Corporation assumes
no responsibility for any errors that may appear
in this document.

No part of this document may be copied or
reproduced in any form or by any means with-
out the prior written consent of Cypress Semi-
conductor Corporation.

Cypress Semiconductor products are not
designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor product could create a
situation where personal injury or death may

List of Trademarks

occur. Should Buyer purchase or use Cypress
Semiconductor products for any such unin-
tended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor
and its officers, employees, subsidiaries, affili-
ates and distributors harmless against all
claims, costs, damages, expenses, and rea-
sonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death
associated with such unintended or unautho-
rized use, even if such claim alleges that
Cypress Semiconductor was negligent regard-
ing the design or manufacture of the product.

The acceptance of this document will be con-
strued as an acceptance of the foregoing con-
ditions.

EZ-USB FX2 Technical Reference Manual,
Version 2.1.

Copyright © 2000, 2001
Cypress Semiconductor Corporation.

All rights reserved.

Cypress, the Cypress Logo, EZ-USB, Making USB Universal, Xcelerator, and ReNumeration are

trademarks or registered trademarks of Cypress Semiconductor Corporation. Macintosh is a regis-
tered trademark of Apple Computer, Inc. Windows is a registered trademark of Microsoft Corpora-
tion. I2C is a registered trademark of Philips Electronics. All other product or company names used
in this manual may be trademarks, registered trademarks, or servicemarks of their respective own-

ers.

Table of Contents

Chapter 1. Introducing EZ-USB FX2

0 [oo 0T (T o O PP PRSP
1.2 AN INrOAUCEION T0 USBeiiiiiiie ettt e e et e e s r e s e e nenees
1.3 The USB SPECIICALIONcc.eeeeee ettt e ettt e e e sttt e e e e et e e e s e nee e e e e e anneeeaeas
T.4 HOSEIS IMASEEN ... e e e e e e e e e e e e e n e e e s e nn e e e e e e e eeeeas
SR U1 1 £ =Toi 1T] o OSSP PR PUP P
1.6 TOKENS AN PIDS ... ciiiiiiiiiiieie ettt et e e e s e s e e ere e e e nnneeenenees
1.6.1 Receiving Data from the HOSE..........oooiiii e
1.6.2 Sending Data to the HOSE.........oi et e e e
1.7 USB Frames........ccccoovoiiieiiiiiee e
1.8 USB Transfer TYPeS......cceeevviieieeeeiiiiieeeenees
1.8.1 Bulk Transfers........ccccocevevvinineeeinnnnnn
1.8.2 Interrupt Transferscccooveeeninneen.
1.8.3 Isochronous Transfers..........cccccocvee.
1.8.4 Control Transfers........cccccovveivierenns
1.9 ENUMEraAtioNccceviiiiieiiiereeeseee e
1.9.1 Full-Speed / High-Speed Detection
1.10 The Serial Interface ENGINE (SIE)......coiuuuiiiiaiiiiieie ettt e e e e et e e e e neaeeeeaeas
1,11 RENUMEIATIONT™ ...ttt ettt r e e s E e s e e s e e e s ne e e s arn e e e nnneeeneneeas
1.12 EZ-USB FX2 ArChITECIUIE ...coiviiiiie ettt
1.13 FX2 FEAIUINE SUIMIMAIYetiiiiiiiieiaeaeaeeeeeaae e ettt e ettt e taeaeaeeaaeeaaaaaaaaaabnsnsns e bebeeeeeeesaeaaaaeaenaaanan
1.14 FX2 Integrated MICTOPIOCESSOLuuiiie et iiiieee e e aieeee e e ettt e e e ettt e e e e aataeeeaeeanbeeeeassaneeeaaeaannneeeaean
I ST o 2 =1 (o o) (g =T | 7= g TSP
SR - T 2= Vo [T TP
1.16.1 56-Pin PACKAGEeeieiiiiiiiiii ettt e et a e e nneees
1.16.2 100-Pin PACKAGEeeieiiiiiiiiie ettt et e e e e e nnn s
1.16.3 128-Pin PACKAgEeeieiiiiiiiiie ettt
1.16.4 Signals Available in the Three Packagesccceoriiiiiiiiiiiiiee e
A - Yot = To TSI I T = Vo =T PRSP
1.18 FX2 ENAPOIN BUFFEIS ...ttt ettt et e e e et e e e e et be e e e e e e e nnneeaans
1.19 EXxternal FIFO INEITACEcoociiiiiie et sn e s
1.20 EZ-USB FX2 ProducCt FamMIly.........cooiiiiiiiiae ettt a s eiee e e e e nneeeee s

Chapter 2. Endpoint Zero

2% I [(oo 18 ox 1o o 1S PP
2.2 Control ENAPOINT EPO........coiiiiiiiiicietie ettt e e e e s ae e e e e et e e e e e e atbareae s s e srssaeesannnaeeees
2.3 USB REOUESESiiiiiiiiiieiiii ettt ettt et e et e e e e e e e e e s e s s s s s s bbbt bbb et e e et e et eeaaaaaeeeeeesassaatbtbanenaneeeees
DA Tt R T] = LU L PP PPPPPR TN
2.3.2 SBE AU c.ciii i it e e e e e e e s e bbbt er e e e et e e e e e e e e e e annnnerene

%‘F CYPRESS

(Table of Contents)

Chapter 3. Enumeration and ReNumeration™

2.3.3 ClEAN FRAIUIEeee ittt ettt ettt e et e sbb e e e e bb e e sabe e e s nbaeesbbeeene
P N T B LT ol o] (o) (PSP
2.3.4.1 Get DESCHPLOr-DEVICE.uviiieiiiiiiie e ettt e e e e e e e e e saaeeeas
2.3.4.2 Get Descriptor-Device Qualifier
2.3.4.3 Get Descriptor-Configurationooeeeeioiiiieiee e
2.3.4.4 Gt DESCHPLON-SIIING «.oeeieieieee ettt e e ettt e ettt ee e e s e sbeeeee e e e seee e e e e e s nneeeaaeaanneeeeas
2.3.4.5 Get Descriptor-Other Speed Configuration
2.3.5 Set Descriptor.......cccccceeevvvnnennn.
2.3.5.1 Set Configuration
2.3.6 Get Configuration
2.3.7 SetInterfacecccceoevviiennnn.
2.3.8 Get Interface.........
2.3.9 Set Address..........
2.3.10 Sync Frame..........
2.3.11 FIrMWAre LOAG.eiiiiiieiiiie ettt ettt e esae e e s e e snbaeeeene

R 700 O 1)1 oo [o 1o J o USRS
3.2 FX2 Startup Modes
3.3 The Default USB Device
3.4 EEPROM Boot-load Data Formats

3.4.1 No EEPROM or Invalid EEPROM

3.4.2 Serial EEPROM Present, First Byte is OXCO

3.4.3 Serial EEPROM Present, First Byte iS OXC2coiiiiiiiiiiieiiiiee et eiieeee e
3.5 EEPROM COoNfigUration BYLEeoiiiiiiiiiiie ettt e st e et ee e e e sataee e e e e ennneeeaeeeanes
3.6 THE RENUM Blil....ccuiiiiiiieeiitiee ettt e ettt e e e e et e e e e e et be e e e e eatbaeaeeesabbraeaeeeasaraeaeaaanns
3.7 FX2 Response to Device Requests (RENUMZO0)........ccuueiiiaiiiiiieee e e e
3.8 FX2 Vendor Request for FIrmware LOAMc..eeiiriiiiiiiei et
3.9 How the Firmware RENUMEIALEScccccuuiiiiiiieieiiie e e e e e e e e e e s e e e e e e aaeaeaeeeaeesaaannnnnes
3.10 Multiple RENUMEIALIONS™ottt e e et e e e et e e e e e naeee e e e e e sateeeaeeeanannaeeaann

Chapter 4. Interrupts

0 T i oo [1 od o o KPP UPPOPPPPPIN
4.2 SRS itttk bttt b e e b bt e Rt e b e e b e e e ab e e e e nne e e nnre s
4.2.1 803x/805X COMPALIDIIILYvvveeeiiiiiiiee et e e e e eaaa e e
e I 1) =T B o] M o {0 Tod =2t [o PP P PP PPPPPTPRN
4.3.1 INEITUPE MASKING ... evreeiieeiiiii et e e e e e e e et ae e e e eantbaee e e e sanbaeeas
4.3.1.1 Interrupt Priorities
4.3.2 Interrupt Sampling
4.3.3 Interrupt Latency...
4.4 USB-SPECITIC INTEITUPLS ...ttt ettt e e e e ettt e e e e e st ee e e e e eabbeeee e s ebbeeeaeeannneeeaaas
4. 4.1 RESUME INTEITUPL . ..e ittt ittt rh et e ettt et e s nbb e e ant e e sbe e e s naneeeabeeenae
A.4.2 USB INEEITUPES ...tiitiiiiiiieie ettt e e e e e e e e e e e e e e s as s s s s s bbb bbb e bt b bneeeaeeeeaeas
4.4.2.1 SUTOK, SUDAV INEITUPLSuuviriiiiiiiiieiiieieeeeeesssssisiiinenererereeeeeeeeseesasasansnnnsnnnes 4-12

Table of Contents

%‘F CYPRESS

(Table of Contents)

A.4.2.2 SOF INTEITUPL ...ttt ettt e et e e e e e e e e e e e as s s s st bbb e aeaeeeeees

4.4.2.3 Suspend Interrupt

4.4.2.4 USB RESET INEITUPL ...oiiiiiiiiiee ettt e e e e e e e

4.4.2.5 HISPEED INEEITUPL ...eeiiiiiiieiiie ettt e e e

4.4.2.6 EPOACK Interrupt.........ccuuvenee

4.4.2.7 Endpoint Interrupts................

4.4.2.8 In-Bulk-NAK (IBN) Interrupt...

4.4.2.9 EPXPING INEITUPL ...eeeeieiiieieie ettt e e e e e e e e e e e see e e e eeeeeeas

4.4.2.10 ERRLIMIT INTEITUPL ..ceeiiiieieee ettt ettt

4.4.2.11 EPXISOERR Interrupt

4.5 USB-Interrupt Autovectorsccocevvvvvvnnnnns
4.5.1 USB Autovector Coding

4.6 12C-Compatible Bus Interrupt
4.7 FIFO/GPIF Interrupt (INT4) ..oeeeviiiiieeciieennn
4.8 FIFO/GPIF-Interrupt Autovectors
4.8.1 FIFO/GPIF AUtOVECIOr COOING. . .eiiiiiiiiiiieeiiiiiie e ettt e e e et ee e e e st e ae e e s stae e e e e s snnraeeeesanes

Chapter 5. Memory
LT o1 10T [¥ Tt i o o PO PT PP PRRP
5.2 Internal Data RAM

5.2.1 The Lower 128
5.2.2 The Upper 128
5.2.3 SFR (Special Function Register) Space...............
5.3 External Program Memory and External Data Memory
5.3.1 56- and 100-PIN FX2 .. ettt ettt be e
5.3.2 128-PIN FX2 ..ottt ettt b bbbt r e bbb ne e
5.4 FX2 MEMOIY IMBPS - ettt ettt et et e e e e e e s e e e e e e ettt b et ettt e et e e eeeeeasaaeesaaaaaasnsnbebebebeseseeeeeeeess
5.5 “Von-Neumannizing” Off-Chip Program and Data Memory
5.6 On-Chip Data Memory at OXEOOO-OXFFFF ...t

Chapter 6. Power Management
(S8 R g1 1 oo [F T i [0 o FAN OO PPPPPR
6.2 USB Suspend
6.2.1 SUSPEND Register

6.3 WAKEUP/RESUIMIE ... iiiitiiiti e ettt e e e ettt e e e e e sttt e e e e e et eee e e s stb e et ee s e st aeeeeeaasasaaee e e e ssbeeeeeasnstbeeaeesannnrees
6.3.1 WaKEUP INTEITUPL ...ttt e e e e e e e st be e e e e ssntb e e e e e asnees

6.4 USB Resume (REMOLE WAKEUP)uvuiieeiiiiiiiee e eeiteie e e s ettt e s sttt e e e s tbe e e e e anstbaae e e e snneaaaeeeannsraeeas 6-6
L YV b = o PP 6-6

Chapter 7. Resets

7285 T 111 o To 11 o3 1T o TSP 7-1
7.2 POWEI-ON RESEE (POR) ..ottt ettt ettt e e e e e e s e e e e e et e e e e e satbaeaeeesstbaaeaeesabaareaeas 7-2
7.3 Releasing the CPU RESELuuiiiiiiiiiiie ettt e et e e e e e e e e e e tbe e e e e s ennees 7-3

7.3.1 RAM DOWNIOAM.cccutiiiiiiieiiiie ettt ettt e ettt s bt e st e e bt e e et e e s beeesnbebeeenn 7-3

Table of Contents iii

%‘F CYPRESS

(Table of Contents)

7.3.2 EEPROM LOAQccuiiiiiiiiiite ettt ettt e e sttt e e e e st e e e e e stabe e e e e anstbaeeaeeanssnaeaeeanns 7-3
7.3.3 EXIEINAI ROM ...ttt ettt e et e e e e e e e e e e e ate e e e e esatbeaaaeans 7-3
T4 CPU RESEE EffECLS ...uuiiiiiiiiiiii ettt ettt s et s e e e e e e e e e e e s s e e e e e e anntbeeaaeans 7-4
7.5 USB BUS RESEL ...uiitiiiiiiiiiiiiiiie ettt ettt e e et e e e e e e e e s s s s s bbbt e e et et et e eaeaeaaeeeeeassesannnnenenenes 7-4
AT o O B T[] o 1= ! PRSPPI 7-5
7.7 RESEE SUMMAIY oiiiiiiiiiiiiiiie ittt et et e e e e e es s e s s sa s s s s bbb ebtb et et eaaeaaaeeeaesassssanssbbbsastbbeannneeeeeens 7-5

Chapter 8. Access to Endpoint Buffers

S 0 o1 1 0T [¥ i o o PP PRSP
8.2 FX2 Large and Small ENAPOINEScooiiiiiiiiiai ittt e e e et ee e e e e sataeee e e e e snnneeaeeeanns
8.3 High-Speed and Full-Speed DifferEnNCEeS........ouueiiiiaieet et eeieeee e
8.4 How the CPU Configures the ENAPOINTSooceiiiiiiiieiee et siieeee e
8.5 CPU Access t0 FX2 ENAPOINT DALA.ueeiieeiiiiiieee et e e e e e e e e enaeae e e e e snnaeeeaeeanes
8.6 CPU Control of FX2 ENAPOINTSoiiiiiiiiie ettt ee e e et e e e e eneeeaaeeanes
8.6.1 Registers That Control EPO, EP1IN, and EPLOUTcociiiiiiiiiiiiie e
8.6.1.1 EPOCS ...ttt ettt bbbt b he et ab e e neas
8.6.1.2 EPOBCH and EPOBCL
8.6.1.3 USBIE, USBIRQ
8.6.1.4 EPOLISTAT ...cceevvvrnnns
8.6.1.5 EPLOUTCS. .. .oiiiiiitieiitieie ettt ettt b ettt san e be e sbeeenneenneas
8.6.1.6 EPLOUTBC.ciiiitieiiiieieeti ettt ettt b bbbttt san et sbe e ne e e
8.6.1.7 EP1INCS
8.6.1.8 EP1INBC
8.6.2 Registers That Control EP2, EP4, EPG, EP8.........c.c.cooviiiiiiiiiie e
8.6.2.1 EP24BBSTAT ..oeiitiiiiii ittt e
8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS..............
8.6.2.3 EP2CS, EPACS, EPBCS, EPBCS........cccoiiiiiiiitieiee et
8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L........cccceviiiiiiiiiieee,
8.6.3 Registers That Control All ENAPOINTS.......coiiiiiiiiiiiiaa e
8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ.......cctiiiiritieitienie sttt
8.6.3.2 EPIE, EPIRQ . ..ciiiiiii ittt e
8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT

8.6.3.4 TOGCTL ...
8.7 The Setup Data Pointer......
8.7.1 Transfer Length
8.7.2 Accessible Memory Spaces
8.8 AULOPOINTELS ...ttt ettt ettt ettt e e oo ettt e e e e bttt e e e e ntbte e e e e msbeee e e e e nnsseeaeeaannneeaeaeasnnneeeann

Chapter 9. Slave FIFOs

£< % A T (oo 18 o3 1o o [PPSR PPPRP
(e I o F= U0 1117 = OSSR SPPPPPRR
9.2.1 SIAVE FIFO PINS ..oiiiieiiiiiiiiie ettt e st e et ae e e e et ae e e e e e tbaaaaaeeaaes
9.2.2 FIFO Data BUS (FD) ...eeeeeeiiiiee et eeee ettt e see e ee st e s e e sneeeesneeeesneeeennneeenn
9.2.3 Interface ClOCK (IFCLK) ... ciiiiiieiieeeeee ettt e e e sat e e e e s eteeeee e e eaaee

iv Table of Contents

%‘F CYPRESS

(Table of Contents)

9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD).......ccvvttiiiiiiiiei et 9-6
9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[L:0]).......eveveirieeeeeersereeanen. 9-8
9.2.6 Slave FIFO Chip SeleCt (SLCS) ...iuiiiie ettt e e 9-10
9.2.7 Implementing Synchronous Slave FIFO WIES..........ccciiiiiiiiiier e 9-10
9.2.8 Implementing Synchronous Slave FIFO Reads...........cccccviiiiiiiieei e 9-13
9.2.9 Implementing Asynchronous Slave FIFO WIESccccvveiiiiiiieeec e 9-15
9.2.10 Implementing Asynchronous Slave FIFO REaAAS...........ccvveeeiiiiiiereiiiiieee e sieee e 9-17
LS T 110101117 L (PRSPPSO OU P OPPR 9-19
9.3.1 FirmMWAre FIFO ACCESSueiiiiiie ittt ettt sttt e et e e e abb e e saneeeneneeas 9-19
9.3.2 EPX MEMOIIES ..ttt ettt ettt ettt et et e e e abb e e nan e e e nanee s 9-20
9.3.3 Slave FIFO Programmable-Level Flag (PF)coovvveiiiiei et 9-21
9.3.4 AULO-IN / AULO-OUL MOOES ...ttt et e e neneeas 9-22
9.3.5 CPU Access to OUT Packets, AUTOOUT = L...ccoccuiiiiieeiiiieeriiee e 9-23
9.3.6 CPU Access to OUT Packets, AUTOOUT = 0....ocvvriiriiieiniiieeiiie e seee e e e 9-24
9.3.7 CPU Access to IN Packets, AUTOIN = L....occiiiiiiiiiiiie e 9-27
9.3.8 Access to IN Packets, AUTOINTOccuiiiiiiiiiiieeiiicc sttt 9-30
9.3.9 Auto-In / Auto-Out INLIAlIZALIONeeiiiii i 9-31
9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers...........ccoceveeeiiciiiieee e, 9-32
9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers..........cooccvveeviiiieeeecnnnee, 9-33
9.4 Switching Between Manual-Out and AUtO-OUL............ccooiiiiiriiiiiiiir e 9-33

Chapter 10. General Programmable Interface (GPIF)

020 R [1 o T [o 1T o TP 10-1
10.1.1 Typical GPIF INTEIFACEeeeiieiiii et 10-3

OB o F= 1 1V PR 10-5
10.2.1 The External GPIF INtEIfaCEooii it 10-5
10.2.2 Default GPIF Pins CoNfIQUIation..........c..uiiiiiiiiiiie et 10-6
10.2.3 SiX CONLrOl OUT SIGNAISeeiiieiiiiiiieee ettt et e e e et bee e e e entae e e e e eeneees 10-7
10.2.3.1 Control OUIPUL MOAESeeeiiiiiiiii et e e e e 10-7

10.2.4 Six Ready IN SIQNAIS.........viiiiiiiiiiiiie et e e e e e e et e e e e sanraaee e e s ennaenes 10-7
10.2.5 Nine GPIF Address OUT SIgNAIScoccuvriieiiiiiiiiiee et e e s ettt e e e sitaee e e e snntvaee e e s ensnees 10-7
10.2.6 Three GSTATE OUT SIgNalSuvvieiiiiiiieiie ettt e e e 10-8
10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE =0cccceeviieenne 10-8
10.2.8 Byte Order for 16-bit GPIF TranSactioNSuuieiiiiiiiiiie et eeiriee e 10-8
10.2.9 Interface ClIOCK (IFCLK) ...uuiiiiiiiiiiiie ettt e e e e e et e e e e saaraaae e e s enaaaees 10-8
10.2.10 Connecting GPIF Signal Pins to Hardware.............cccccvvieeiiiiiiie e ciiiee e eciiviee e 10-10
10.2.11 Example GPIF Hardware INterCONNEC..........uuvieeiiiiiiie e 10-10

10.3 Programming the GPIF WaVETOIMSuiiiiiiiiiiiie ettt e eeae e e e ennavae e e enees 10-11
10.3.1 The GPIF REQISIEIS ..coii ettt ettt e e ae e e e et ea e s e ssbaaaeeeaannenes 10-12
10.3.2 Programming GPIF WaVefOrmMS........ccccuiiiiiiiiiiee ettt evtaee e sivnaeee e 10-12
10.3.2.1 The GPIF IDLE SEAEcciueiiiiiieaiiee ettt ettt 10-12

10.3.2.1.1 GPIF Data Bus DUNNG IDLEccvviiiiiiiieei e 10-13

10.3.2.1.2 CTL Outputs DUNNG IDLE.........ccooiiiiiiie e 10-13

10.3.2.2 DEfiNiNG STALEScuvviiieiii et e s e e e e e e e e et b e e e e snee 10-14

Table of Contents Vv

%‘F CYPRESS

(Table of Contents)

10.3.2.2.1 Non-Decision Point (NDP) States.........ccccveeeiiiviieieeiiiiiieee e eciiriee e 10-14
10.3.2.2.2 Decision Point (DP) States .

10.3.3 Re-Executing a Task Within @ DP State.............ccueiiiaiiiiiiiie e

10.3.4 StAte INSIIUCIONSeuiiii ettt ettt e e ettt e e e e e e e e e e nae e e e e e e nneeeaaaeaan
10.3.4.1 Structure of the Waveform DesSCrPtorscoieiiieiieeiiieee e 10-25
OB 1 1= T PSPPI 10-26
10.4.1 Single-Read TraNSACHONSccoeiiiuiiiaeieiiiiiae et ee e e et e e e e e eeee e e e e e s eaeeee e e e anreeeaaaaan 10-33
10.4.2 Single-Write TranSACIONSueiiiiiiiiiie et ee e e et e e e st ee e e eeae e e e e e eeeeeaaeann 10-38
10.4.3 FIFO-Read and FIFO-Write TranSaACHONSccuueeiiaaiiiieieeeeesiiiieee e eeieeee e eeieeeee s 10-41
10.4.3.1 TranSaCtioN COUNLETcoiiiiiiiieeie et e e et e e e et be e e e e et eee e e e e ennebe e e e e anneneeeas 10-41
10.4.3.2 Reading the Transaction-Count Status in a DP State...........c..cccccveeeeeennnnen. 10-42
10.4.4 GPIF Flag SEIECHONciiiiiiiiiee ettt e e e e e e e s sataeaa e 10-42
O R e o | ol P To TR (o] o PP PPR 10-42
10.4.5.1 Performing a FIFO-Read TranSaction...........ccccveeivcieiieeiiiiiieee e e 10-43
10.4.6 Firmware Access to IN packet(s), (AUTOIN=1)............10-48

10.4.7 Firmware Access to IN Packet(s), (AUTOIN =0)10-49
10.4.7.1 Performing a FIFO-Write Transaction...................10-52

10.4.8 Firmware access to OUT packets, (AUTOOUT=1)10-56
10.4.9 Firmware access to OUT packets, (AUTOOUT = 0) 10-57
10.4.10 Burst FIFO Transactions10-59
10.5 UDMA INTEITACE. ... eeee ittt ettt sne e e sn e e e s e e e e e nnnee s 10-63

Chapter 11. CPU Introduction

vi

500 O 101 o T [o 1 o o SR PPP
11.2 8051 Enhancements.........
11.3 Performance Overview
11.4 Software Compatibility
11.5 803x/805x Feature Comparison...........
11.6 FX2/DS80C320 Differences................
11.6.1 Serial Ports
11.6.2 TIMEr 2 cvvvveeeieieieee e
11.6.3 Timed Access Protection........
11.6.4 Watchdog Timer
11.6.5 POWET Fail DEECHIONoiiiiiiiiiiiie et e e et e e e s a e e e s eeaaae e e e e aan
BT o o A 1 TSP UPPRRP
G A 1 (=T (0] o € OO PO PP TRPP N
11.7 EZ-USB FX2 ReQIStEr INtEITACEcceiiiiiiii ettt et e e e e raaeae e
11.8 EZ-USB FX2 INtErNAI RAM ...ttt e e e et e e et e e s e e e e s e nsaraeaaeeeaas
IR T 1@ T o o PSR PPPR
N O [(=T (T o £ PP UPPPPTRSTPPIOE
0 I T 01V o 11 (o] OO POPUPPP
11.12 Special Function RegIStErs (SFR)iiii ittt e e e e e e e e e
11.13 External ADdreSS/Data BUSESccvviiiiieiei ettt e s e s aenrnranneees
0O T USRS

Table of Contents

%‘F CYPRESS

(Table of Contents)

Chapter 12. Instruction Set

0 1 o T 18 o1 o o PO PUPR P 12-1
2 0t O 1 1S3 1 U T o T T I T o RSP RTRR 12-5
12.1.2 Stretch Memory Cycles (Walit States)ccouiiiiiiiiieeiiiie e 12-5
12.1.3 DUl DAA POINTETS......cuiiiiiiiieiirie ettt e s sne e e s nnee e 12-7
12.1.4 Special FUNCHON REQISLEISuuiiiieiiiie et et iee ettt ee e e et e ee e e seeeeeae e e aneeeeas 12-7

Chapter 13. Input/Output

R 200 R [o1 o T [o 1 o o PRSPPI 13-1
B 1@ T o o PRSPPI 13-1
13.3 1/O POrt AREINAtE FUNCHIONScociiiiiiiiciie ettt e et e e s e st e e e s e sta e e e e es s enraaeees 13-5
13.3.1 Port A Alternate FUNCHONScuuiiiiiceiiee ettt e e e e e e areeaeas 13-7
13.3.2 Port B and Port D Alternate FUNCHONS.........ccccuuiiiiiiiiiie et 13-8
13.3.3 Port C Alternate FUNCHONS........cuviiiiieciiei et ete e e e et e e e et e e e e s eraneeas 13-9
13.3.4 Port E Alternate FUNCLIONSccciiiiei ittt e e eare e e iavae e e 13-10
13.4 12C-Compatible BUS CONIOIETiiiiiiiiiiie et e e e e e e e e et ar e e e s e sabraeeeeessneens 13-12
13.4.1 Interfacing t0 12C PeriPhEralScciiiiiiiiiii et tee e e sreraee e e eaenes 13-12
13.4.2 REOISIEIS. .. ttiiie et ettt ettt et e et e e e st e e e e e e bbb e e e e e et et e e e e eatbaraeeeaanrrraaeeeeannre
13.4.2.1 Control Bits
13.4.2.2 Status Bits..........
13.4.3 Sending Data.................
13.4.4 Receiving Data
13.5 EEPROM BOOt LOAUENuvviiieiiiiiiiieeee ettt ee et e e e e e e e e e e e e e e s s s s s a e aaaaeeaaaeeaaaaneeas

Chapter 14. Timers/Counters and Serial Interface

I R [o1 1 o T [o 1 o PRSPPI
14.2 Timers/Counters
14.2.1 803x/805x Compatibility
14.2.2 TIMErs 0 and L......ccovieiiiiiiiie ettt ee e et e e e e st eae e s s naees
14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 1

14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 1

14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1.................... 14-5
14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 ONlYcoooiiieiiiiiiiiiiee e 14-6
14.2.3 TIMEr RAt€ CONMIOlcceieieeiiie ettt e e e e e e e e e ee e e e e e e e e eeeessans 14-7
S I 0 1= 14-8
14.2.4.1 Timer 2 Mode Controlccocevvvvvevnnnn. 14-9

14.2.5 Timer 2 — 16-Bit Timer/Counter Mode
14.2.5.1 Timer 2 — 16-Bit Timer/Counter Mode with Capture

14.2.6 Timer 2 — 16-Bit Timer/Counter Mode with Auto-Reloadccceveeiiiiiiieeeseenee, 14-10
14.2.7 Timer 2 — Baud Rate Generator Mode

14.3 Serial INterfacecoovveeeiiiiiiiie e 14-12
14.3.1 803x/805x Compatibility................... 14-13
14.3.2 High-Speed Baud Rate Generator

Table of Contents Vii

%‘F CYPRESS

(Table of Contents)

I TR T 1Y o o LT 0 PP 14-15

I 70 Y o o - PSPPSR 14-20
14.3.4.1 Mode 1 Baud RAEcceieiiiiiiiiee ettt a e e e e 14-20
14.3.4.2 Mode 1 Transmit

14.3.5 MOUE 1 RECEIVE.....ccce i e ittt e e e e e e e e e e e e et e e e e e e e e aaeaaaeaeeasaaaanan
T4.3.6 IMOUE 2.t e e e e ettt e e e e e e tb e e e e e s e etb e e e e e e eabaseeeeeaaaareeeeeeanraeeaaaan
14.3.6.1 Mode 2 Transmit
14.3.6.2 Mode 2 Receive
I Ty A Y o o [T PSPPSR

Chapter 15. Registers

70 10T 18 o1 o o PO PUPPPPRTRR 15-1
15.1.1 Example RegiSter FOMMALScooiiiiiieeieeeie et 15-1
15.1.2 Other CONVENLIONS.ciiiiriiiiiiie ettt s e e e nre e e e arn e ennees 15-2

15.2 Special FuNction RegIStErs (SFR) ... ettt e e eanaeee e 15-3

15.3 ADOUL SFRS ...ttt et ekttt ket h et e bt s h bt e bt ket he e e bt et e e be et e ereeenee e 15-4

15.4 GPIF WaVefOrmM MEIMOIIESuviiiiiie ittt ettt e e e e s s nnne s 15-13
15.4.1 GPIF Waveform DeSCriptor DAta...........ooiueeiieiiiiiiee et e e e e 15-13

15.5 General Configuration REJISIEISuiiiiiiiiiiee ettt e e e e e e e e e e e an 15-13
15.5.1 CPU CoNtrol @nd STALUScceiirieeeiiriieesirie e e e e nne e e snnee e 15-13
15.5.2 Interface Configuration (Ports, GPIF, slave FIFOS)........c.ueeeiiiiiiiiiiiiiieeieeeeeeee 15-14
15.5.3 Slave FIFO FLAGA-FLAGD Pin Configuration...............cceeeeiiiiiiieieiniieec e 15-18
15.5.4 FIFO RESELeitiiiiieiii ittt ettt et e sbe et e e e sbeeanbe b e 15-20
15.5.5 Breakpoint, Breakpoint Address High, Breakpoint Address LOW...........cccceecvvieeeennee 15-20
15.5.6 230 Kbaud ClIOCK (TO, TL, T2) .eeiieirieiieeiiieniee st sieesiee et e e et sreesneenee e 15-22
15.5.7 Slave FIFO Interface PiNS POIAILYooueiiiiiiiiiiiiie e 15-22
15.5.8 Chip REVISION ID ...ttt ettt ettt e e e sbe e e e e s e ee e e e aneeeeaaaaan 15-23
15.5.9 Chip REVISION CONLIOL.....ciiiiiiiiiiieiiee ettt e e e e e e e e e e aneeeeaeenn 15-24
15.5.10 GPIF HOIA TIME . .eiiiiiiiieitie ettt ekttt sae e sbe e b b 15-25

S I =l aTo oo [g LA @ o] o} iTo] = Vi{e] o FOu PP 15-26
15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurationsccccceeiiiieiieeniiiieee e 15-26
15.6.2 Endpoint 2, 4, 6 and 8 Configurationcooiiiiiiiiiiiiiiee e 15-27
15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configuration..............cccceoeiiiiieeeiiiiiieeie e 15-29

15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low)
15.6.5 Endpoint 2, 4, 6, 8 /Slave FIFO Programmable-Level Flag (High/Low)
15.6.5.1 IN ENAPOINES .. .ceeiiiiiiiiiieee ettt e e e e e e eennee
15.6.5.2 OUT Endpoints
15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame

15.6.7 FOrce IN PACKEt ENGooiiiiiiiieie et e e
15.6.8 FOrce OUT PacCKet ENAccvviiiiiiiiiiee e

N A 101 0T £ (U] o] C TP P TP TP TP TRUPPPPPPINE
15.7.1 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Requestccccccevviiieeeennn. 15-43
15.7.2 IN-BULK-NAK Interrupt ENnable/ReQUESL...........couieiiieiiiiiiee e 15-45
15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/ReqUeSt............coeeiiiiiiieiiiiiiieeeeeiieeeee 15-46

viii Table of Contents

%‘F CYPRESS

(Table of Contents)

15.7.4 USB Interrupt ENABIE/REQUESLTcoiiiiiiiiee ittt ebaree e e siveaeae e e enenes
15.7.5 Endpoint Interrupt ENable/REQUEST..........cooiiiiiiiiiii e
15.7.6 GPIF Interrupt ENable/REQUESEccouiiiiiiecciieee et etee e e
15.7.7 USB Error Interrupt ENable/REQUESTccoiiiiiiee ettt
15.7.8 USB Error CoUNter LIMIt........ooiiiiiiiie et
15.7.9 Clear EFTOr COUNT......ciitiiiiiiiiiiiie ettt ettt ettt sb et e e st e ebe e e b e e e it e e e sabeeesnbaeeean

15.7.10
15.7.11
15.7.12

INT 2 (USB) AULOVECIONveiieeiiiiiiiee e eeiiiee e e sttt e e e e e e et te e e e e esnaaaeaesannsaaeeeeesnenes
INT 4 (slave FIFOS & GPIF) AUtOVECTONccvviiieiiiiiiiee e scitiee e e e sivae e e e
INT 2 QN INT 4 SOIUP ...uviiiieiiiiiee et e et ee e e e et e e e e st e e e e s srba e e e e s sesnees

15.8 INPUY/OULPUL REGISTETS .iiiiiiiiie ettt et e e e e et e e e e e st b e e e e e e eatbasaaeeessbraeaeeessnnees

15.8.1 1/
15.8.2 1/
15.8.3 I/

O PORTA Alternate Configuration.............cccuviieiiiiiiiie e
O PORTC Alternate Configuration............cccccuuieeeiiiiiiiie e eiiiieee e e e siee e e sevee s
O PORTE Alternate Configuration.............cccuuieeiiiiieiee e

15.8.4 12C Compatible Bus Control and StatUsS.........ccuuieeeeiiiiiiiieciiiiinee e ciiiie e sivree e
15.8.5 12C-Compatible BUS Data........c..vviieiiiiiiiiei ettt ee et e et e e e s naees
15.8.6 12C-Compatible BUS CONIOL.........uiiiiiiiiiiei ettt e e e ee e e e siaeaaee e e e enenns
15.8.7 AUTOPOINTERS 1 and 2 MOVX GCCESScuvvieiriiiiiiiiiieeesiieessiiee s sinee e e ssieeesnieee s
15.9 UDMA CRC REQISIEIS ...eiiiiiiiiiiie e e ciiitie e e sttt e e e e s sttt e e e e s st e e e s stbe e e e e asabbeeaeeetbtaeaaesassraeaeeessnsens
15,10 USB CONIIOl ...ttt ettt sttt e e e et e sabte e nbe e e e ann e e e naneas

15.10.1
15.10.2
15.10.3
15.10.4
15.10.5
15.10.6
15.10.7
15.10.8

USB CoNtrol and STATUS........cciiiiiiiiiiee et e e eiiriee e e st e e et ee e e s s sneraae e e s ssbaaaee s
ENter SUSPENA SEALE......ccuviiiiie ittt et e e e e e e
Wakeup CoNntrol & SEAtUScc.uvviiieiiiiiii et e e e st e e e e naaeees
Data TOggIe CONLIOL......cciiiiiee e e e e e e s eeaeeaaas
USB Frame Count High.................
USB Frame Count LOW..................
USB Microframe Count..................
USB Function Address

15.11 ENdpPOiNtSovvvveeiiiiiiiee et

15.11.1
15.11.2
15.11.3
15.11.4
15.11.5
15.11.6
15.11.7
15.11.8
15.11.9
15.11.10
15.11.11
15.11.12
15.11.13
15.11.14
15.11.15
15.11.16

Table of Contents

Endpoint 0 (Byte Count High)
Endpoint 0 Control and Status (Byte Count Low)
Endpoint 1 OUT and IN Byte Count..........ccccccevvviveeeeeniinnnnnn.
Endpoint 2 and 6 Byte Count High
Endpoint 4 and 8 Byte Count Highoooiiiiiiiiiei e
Endpoint 2, 4, 6, 8 Byte COUNE LOWcuvviieeiiiiiiiie ettt a e neea e
Endpoint O Control and STatUS...........cooiiiiiieiiiiiiiiie ettt
Endpoint 1 OUT/IN Control and StatUS...........cccuviieeiiiiiiiiie et esieeiee e sineeee e
Endpoint 2 Control and STatUS...........cooiiiiiieiiiiiiiiee et
Endpoint 4 Control and StAtUS..........cociuviieeiiiiiiiiie et
Endpoint 6 Control and StAtUS...........ociuiieeeiiiiiieie et
Endpoint 8 Control and StatUS...........occuiieeeiiiiiiiie et
Endpoint 2 and 4 Slave FIFO FIags........cccccooiiiiiiiiiiiiiie et
Endpoint 6 and 8 Slave FIFO FIags.........ccccooiuiiiiiiiiiiiiie et
Endpoint 2 Slave FIFO Byte Count Highooviiiiiiiiiie e
Endpoint 6 Slave FIFO Total Byte Count Highc.ccoooiiiiiiiiiii e

%‘F CYPRESS

(Table of Contents)

15.11.17 Endpoint 4 and 8 Slave FIFO Byte Count Highcccccveiiiiiiiiiiiciiec e 15-79
15.11.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte COUNt LOW.........cvvvveiiiiiiieeeeiciieeeeeesiiieee e 15-79
15.11.19 Setup Data Pointer High and LOW AdAreSS.........ccceiiiiiiieeiiiiiiieee s sieen e 15-80
15.11.20 Setup Data POINTEr AULO.......oiiiiiiiiiiie ettt ee e e e s st e e e e e earaeee s 15-81
15.11.21 Setup Data - 8 BYLESuuiuiiiiiiiiiiiiiiiiiiie et e st e e e e e e e 15-82
15.12 General Programmable Interface (GPIF)oooiiiiie it 15-83
15.12.1 GPIF Waveform SeIECION........cociiiiiiee it 15-83
15.12.2 GPIF Done and 1dle Drive MOGEccoouiiiiiiiiiiiiieiiie et 15-83
15.12.3 CTL OULPULS .eiieeeiei ettt ettt ettt e e e e e e e e e e e s s s s s s bbb e e re e et e teeaeaeeeesessnssannnnnen 15-84
15.12.4 GPIF AAAress High........cooiiiiiii ettt et e e st aa e 15-86
15.12.5 GPIF AArESS LOW ...eoiiiiiiiiiiieiiiiee ittt ettt nae e e et e eaes 15-87
15.12.6 GPIF FIOWSIate REQISEIS......uiiiiiiiiiiiiie ettt e ettt et ee e e et e e e e e sraaaee s 15-87
15.12.7 GPIF Transaction COUNt BYLES.........cciiiiiiiiiieeiiiiiiie e esiieeee e sttt e e e e srae e e e s snineaa e 15-95
15.12.8 Endpoint 2, 4, 6, 8 GPIF Flag SelecCt..........ccoeeiiiiiiei e 15-97
15.12.9 Endpoint 2, 4, 6, and 8 GPIF Stop TranSactioncccveeeviiivieeesiiiiiereessiiveeeeens 15-98
15.12.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF THQQErcccvvvieiiiiieieeeeeciieeeeeesiieea e 15-98
15.12.11 GPIF Data High (16-Bit MOOE)cuiuiveeieeeieeeeeeeeeeeeeesseeeeess s seneneen 15-99
15.12.12 Read/Write GPIF Data LOW & Trigger TranSaction...........cccccvveeveiuveereeesiiieeeeennns 15-99
15.12.13 Read GPIF Data LOW, No Transaction Trigger.........cccvvuveeiiiuirieeeesiiieeeeeeesivnneas 15-100
15.12.14 GPIF RDY Pin Configurationcccciiiuiiieeeiiiiiie e ciiiee e e sivtree e e s snnveee e e s esvaeeas 15-100
15.12.15 GPIF RDY PiN STAtUSccouiieiiei it eeieee ettt a e esatae e e e snataae e e e s ensnnnas 15-101
15.12.16 ADOIM GPIF CYCIES...uiiiiiiiiiiiiee ettt e e e e et ee e e s straeeas 15-101
15.13 ENAPOINT BUIEIS ..oiiii ittt et e e e et e e e e s b e e e e e e e nsaaaeeeas 15-102
15.13.1 EPO IN-OUT BUEI . ..uiiiiiiiiiiit ettt e e e et ee e e envaeeas 15-102
15.13.2 Endpoint 1-OUT BUFFEIcoieiiiiiec ettt e 15-102
15.13.3 ENdpoint L-IN BUFFEE ...eeiiiiiiiiiice ettt et 15-103
15.13.4 Endpoint 2/Slave FIFO BUFfEr........ccviiiiiiiiieeiee st 15-103
15.13.5 512-byte Endpoint 4/Slave FIFO BUFfer..........ccoviiieiiiiiiiiie e 15-104
15.13.6 512/1024-byte Endpoint 6/Slave FIFO BUFfer...........cccovviiiiiiiiiecie e, 15-104
15.13.7 512-byte Endpoint 8/Slave FIFO BUFfer...........ccovvieeiiiiiiiiie e 15-105
15.14 Synchronization DEIAYc.uuviiiiiiiiiiie ettt e e e e e e e st e e e e e sntbaeaaeaan 15-105
Appendix A
Default Descriptors for Full Speed MOAEocueeiiiiiiiiieee e Appendix - 1

Appendix B
Default Descriptors for High Speed Mode..........oouuuiiiiiiiiiii e Appendix - 11

Appendix C
FX2 REQISIEI SUMMEAIYiiiiiiie ettt ee ettt e ettt ee e s ettt e e e e et e e e e e e aanbeeeeaeaanneeeeans Appendix - 23

Table of Contents

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.
Figure 1-17.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-2.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 6-1.

USB PACKELS ..uviiiiiiiiiiiiiie ettt e e e e e et e e e e e e s e st a e s er e e e e eeaeaeeeeeeaanannnnnnnnne 1-4
Two Bulk Transfers, IN and OUT ...t a e eeaaae e e e 1-6
AN INTEITUPE TrANSTEE .eviiieei e e e e e e e e et ae e e e e ntbaae s 1-6
AN I1SOCNIONOUS TraNSTEEvviiiiie i e e e e e e et as 1-7

A Control Transfer
What the SIE Does
FX2 56-pin Package Simplified Block Diagram
FX2 128-pin Package Simplified BIOCK Diagramccccceeeeiiiiieieeeiiiiiiee e eeiiiee e 1-12
FX2 Block Diagramccccccvveeeeiiiiiieieesiiiveneeens

56-pin, 100-pin, and 128-pin FX2 Packages
Signals for the Three FX2 Package TYPESueiiiiiiiiiiiiie et
CY7C68013-128 TQFP Pin ASSIGNMENTeiiiiiiiiiiiie e ee e ee e
CY7C68013-100 TQFP Pin ASSIGNMENTeiiiiiiiiiiiee et ee e ee e
CY7C68013-56 SSOP Pin ASSIGNMENTcuuiiiiiieiiiiiiee e eiiiie et e st e e sraaeee e e
FX2 ENAPOINt BUFFEIS ..eiiiiiiciiiiie ettt ettt a e e e eenen s
FX2 FIFOS in “Slave FIFO” MOccooi ittt
FX2 FIFOS iN “GPIF MaSter” MOUEcoiceeeiieiiieiiee et e e e
A USB Control Transfer (With Data Stage)
Two Interrupts Associated with EPO CONTROL Transferscccovvvveiiiiiiiieniesicieeneeee 2-3
Registers Associated with EPO Control Transfers
Data Flow for a Get_Status REQUESTccvviiiiiiiiiiice e
Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requestsccccocceeeeennnee. 2-13
EEPROM CoNfiguration BYLEccuuiiiiiiiiiiiiie ettt et e et e e e e e e
USB Control and Status REJISTENoii ittt e e
(OS] 2 L0 =] 1 (0] o] £ P PPPPPTPTPT
The Order of Clearing Interrupt Requests is Importantcccccoeceievieiiiiieree e,
SUTOK and SUDAV INTEITUPLS ...eviiiiiiiiiiee it it e ettt e e esitre e e e eitaee e e e s snbaaaeeesesrsnaeaeaaans

A Start Of Frame (SOF) PaCKeLcoooiiiiii e
The USB Autovector Mechanism in ACHONooeiiiiiiiire e
[2C-Compatible Bus Interrupt-Enable Bits and Registers
The FIFO/GPIF Autovector Mechanism in Action

Internal Data RAM OrganiZationocciuereeiiiiiiieeeeesiiieee e e s sseee e e e s s snre e s e e s ssineeeeesenssaes
FX2 External Program/Data Memory Map, EA=Occooviiiiiiiiiiiieee e
FX2 External Program/Data Memory Map, EA=1c.........

On-Chip Data Memory at OXEOQOO-OXFFFFooiiiiiiiiiee e
Suspend-ResuUME CONLIOLoiiiiiiiiiie e e e

xiii

%‘F CYPRESS

(List of Figures)

Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 7-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.

Figure 9-10.
Figure 9-11.
Figure 9-12.
Figure 9-13.
Figure 9-14.
Figure 9-15.
Figure 9-16.
Figure 9-17.
Figure 9-18.
Figure 9-19.
Figure 9-20.
Figure 9-21.
Figure 9-22.
Figure 9-23.
Figure 9-24.
Figure 9-25.
Figure 9-26.
Figure 9-27.
Figure 9-28.
Figure 9-29.
Figure 9-30.
Figure 9-31.
Figure 9-32.
Figure 9-33.
Figure 9-34.
Figure 9-35.
Figure 9-36.

Xiv

USB SUSPENT SEUUENCE ..eeiiiiiiiiiieeeeeitiie e e e eeiiee e e e e st ae e e e aastbabeaeeessatbaeaeessasbaeeeessasaaaeeaenanns
FX2 WaKeUP/RESUME SEQUEINCE ...cccuvviierieeiiiieeeeeesiiiieeeeeasstbesaeessntnsresassssssseeasessssreseeeans
USB Control and StatusS FEOISETcciiuiiiieeiiiiiiiie e sttt e e s et e e e e e s e e e e e s e e e e e s snraeeaaans
EZ-USB FX2 RESELSuvvviiiiiiiiiiiiiiieeeeeee,

Slave FIFOs’ Role in the FX2 System
FX2 Slave Mode Full-Featured Interface PiNScc.uuiiiiiiiiiiiieee e
Asynchronous vs. Synchronous Timing Models
8-bit Mode Slave FIFOS, WORDWIDEZOccceiiiiiiiiiieiiiiiee ittt siee et seeeeenineeens
16-bit Mode Slave FIFOS, WORDWIDESLccoiiiiiiiiiiiiiee ettt
| O I Qo] o1 {To U =1 1T o PSR TUURPPRRt
Satisfying Setup Timing by Inverting the IFCLK OULPULcceeeiiiiiiiieiie e

Slave FIFO CONLIOl PINSoiiiiiiiieiiiiei ettt
Interface Pins Example: Synchronous FIFO Writes
State Machine Example: Synchronous FIFO Writes
Timing Example: Synchronous FIFO Writes, Waveform 1
Timing Example: Synchronous FIFO Writes, Waveform 2

Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin lllustrated 9-12
Interface Pins Example: Synchronous FIFO REAASccvvveeiiiiiiiieeeeiiiiiie e 9-13
State Machine Example: Synchronous FIFO Readscccvvvvveiiiiiiieei et 9-13
Timing Example: Synchronous FIFO Reads, Waveform 1cccccoccvieeeiiiiiiiee e 9-14
Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag lllustrated 9-14
Interface Pins Example: Asynchronous FIFO WIESc..eeiiiiiiiiiieee e

State Machine Example: Asynchronous FIFO WItESooiiiieiiiiiiiieie e
Timing Example: Asynchronous FIFO WIESceciiiiiiiieie it eeiie e
Interface Pins Example: Asynchronous FIFO Readscccccceevvvviieee e
State Machine Example: Asynchronous FIFO Readsccccccveeiviiiiieeeeeiiiieec e
Timing Example: Asynchronous FIFO ReadSccooiiiiiiiiiiiiiiiiee e
EPXFIFOBUF Registers
EPX MEIMOFIES ...ttt ettt ettt e sttt e e e e e et e e e s e nbe e e e e e e nsaeeeaeennnneeaaeas
When AUTOOUT=1, OUT Packets are Automatically Committed
TD_Init Example: Configuring AUTOOUT =1
TD_Init Example: Configuring AUTOIN = 1 ..ooiiiiiiiiiiiie e e e
TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=1
TD_Init Example, Configuring AUTOOUTZ0 ...iieiiiiieiiee e
Skip, Commit, or Source (AUTOOUT=0) ...oeiiiiiiiiiieeeiiiiiie e iieeee et e e e e
TD_Poll Example, AUTOOUT=0, Commit PACKetcccccveeiiiiiiiieeeiiiiiie e ciiiiie e e
TD_Poll Example, AUTOOUT=0, SKip Packetccccooiiiiiieiiiiiiie e
TD_Poll Example, AUTOOUT=0, SOUICE ...cciiiiiiiiiieaeeiiieeeeeeeiieeeaeeaiseeeeaeeanneaeeaeeennees
TD_Init Example, OUT Endpoint Initialization ..o

List of Figures

Figure 9-37.
Figure 9-38.
Figure 9-39.
Figure 9-40.
Figure 9-41.
Figure 9-42.
Figure 9-43.
Figure 9-44.
Figure 9-45.
Figure 9-46.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.
Figure 10-16.
Figure 10-17.
Figure 10-18.
Figure 10-19.
Figure 10-20.
Figure 10-21.
Figure 10-22.
Figure 10-23.
Figure 10-24.
Figure 10-25.
Figure 10-26.
Figure 10-27.
Figure 10-28.
Figure 10-29.

List of Figures

%‘F CYPRESS

(List of Figures)

TD_Poll Example, AUTOIN = 1 ..ouiiiiiiiiiiiiiee ettt e e et e st a e e e s saaa e e e s e nnnaeees
Master Writes Directly to HOSt, AUTOIN = 1 ..o e
Firmware Intervention, AUTOIN = 0 0F L ...ooouiiiiiiiiiiiee et
TD_Poll Example: Sourcing an IN Packet
TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND
TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTENDcccccceeeriiinneenn.
TD_Poll Example, AUTOIN=0, Editing a Packet via EPxBCH:L
Code Example, Synchronous Slave FIFO IN Data Transferccccccoovviveieeiiiiiieee e
TD_Init Example, Asynchronous Slave FIFO IN Data Transferscccccevcvveviiinieenn.
TD_Poll Example, Asynchronous Slave FIFO IN Data Transferscccccoceeeiiiiieneenn.
GPIF’s Place in the FX2 SYSEM ...ttt e e saaeeea e e
Example GPIF WaVefOrM ...ttt e e e e
EZ-USB FX2 Interfacing to a Peripheralccooiiiiiiiiiiiiiccciecce e
| LI Qo] a1 U] = 11T o SOOI
Satisfying Setup Timing by Inverting the IFCLK Output
GPIF State Maching OVEIVIEWuuuiiieiiiiiiiee et eiteeee e ee e e e eateeee e e s eeaeeeaeean
Non-Decision POint (NDP) StateSccoiiiiiiiiiiiiiiiee e e e
One Decision Point: Wait States Inserted Until RDY0 Goes Low

One Decision Point: No Wait States Inserted:
RDYO0 is Already Low at Decision Point 11

Re-Executing a Task Within @ DP Stateccccciviieiiiiiiiiie e sivaee e
GPIFTool Setup for the Waveform of Figure 10-10

A DP State Which Does NOT Re-Execute the Task
GPIFTool Setup for the Waveform of Figure 10-12

Firmware Launches a Single-Read Waveform, WORDWIDE=0ccccceecuvireernnes
Single-Read Transaction WavefOorm ...
GPIFTool Setup for the Waveform of Figure 10-15ccccceeiiiiiiiiee e
Single-Read Transaction FUNCLONSccccuiiiiiiiiiiiiee ettt
Initialization Code for Single-Read Transactionsccccoevvivieeeiiiiiiieee e
Firmware Launches a Single-Write Waveform, WORDWIDE=0ccccceicuiireernnns
Single-Write Transaction Waveform ...
GPIFTool Setup for the Waveform of Figure 10-20cccoeiiiiiiiiieniiiieeee e
Single-Write Transaction FUNCHONSociuiiiiiiiiiiiieie et e e
Initialization Code for Single-Write Transactions
Firmware Launches a FIFO-Read Waveform ..o
Example FIFO-Read TranSaCioNcccoeiiiiiiiiiie e a e e
FIFO-Read Transaction Waveform ...t
GPIFTool Setup for the Waveform of Figure 10-26c..cooeiiiiiiiieeiiiiiieee e
FIFO-Read Transaction FUNCHONSc.ooiiiiiiiiiieiiiee et
Initialization Code for FIFO-Read TranSactionsccccveviiieiiiieeeiiiee i

XV

%‘F CYPRESS

(List of Figures)

Figure 10-30.
Figure 10-31.
Figure 10-32.
Figure 10-33.
Figure 10-34.
Figure 10-35.
Figure 10-36.
Figure 10-37.
Figure 10-38.
Figure 10-39.
Figure 10-40.
Figure 10-41.
Figure 10-42.
Figure 10-43.
Figure 10-44.
Figure 10-45.
Figure 10-46.
Figure 10-47.
Figure 10-48.
Figure 10-49.
Figure 10-50.
Figure 10-51.
Figure 10-52.
Figure 10-53.
Figure 10-54.
Figure 10-55.
Figure 10-56.
Figure 10-57.

Figure 11-1.
Figure 11-2.
Figure 11-1.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 14-1.

Xvi

FIFO-Read w/ AUTOIN = 0, Committing Packets via INPKTEND w/SKIP=0
FIFO-Read w/ AUTOIN = 0, Committing Packets via EPXBCLcccccccoevvveveeerinnnnn.
AUTOIN=1, GPIF FIFO Read Transactions, AUTOIN = 1ccccovvriniireniiiennineeninennn
FIFO-Read Transaction Code, AUTOIN =1 ..
Firmware intervention, AUTOIN = O/1uniiii e e e e e e e e sa s
Committing a Packet by Writing INPKTEND with EPx Number (w/SKIP=0)
Skipping a Packet by Writing to INPKTEND w/SKIP=1 .
Sourcing an IN Packet by writing to0 EPXBCH:Lccooiiiiiiiiiiiiie e
Firmware Launches a FIFO-Write Waveformccccccoviiiiniiinniic e
Example FIFO-WIrite TranSACONeiiiiiiieii e
FIFO-Write Transaction WavefOrm ...
GPIFTool Setup for the Waveform of Figure 10-40coooiiiiiiiiiiiieieeeee e
FIFO-Write TranSaction FUNCHONSooiiiviiiiiie it
Initialization Code for FIFO-Write TranSactionScccovceeeiiiiieenieieiiiee e sieee e
FIFO-Write w/ AUTOOUT = 0, Committing Packets via EPxBCL .
CPU not in data path, AUTOOUTEL ...t e s e
TD_Init Example: Configuring AUTOOUT =1
FIFO-Write Transaction Code, AUTOOUT =1
Firmware can Skip or Commit, AUTOOUT =0
Initialization Code for AUTOOUT = 0 ..ooviuiiiiiiiiieiiiee ettt
Committing an OUT Packet by Writing OUTPKTEND W/SKIP=0cccccccovvivieieeninnns
Skipping an OUT Packet by Writing OUTPKTEND W/SKIP=1cccoooiiiiiiiiiieeris
Sourcing an OUT Packet (AUTOOUT = 0) .oooiiiiiiireeeiiiiiee e eiiiee e eieee e e ea e
Ensuring that the FIFO is Clear after Power-On-Resetcccceiiiiiiiieeeiiieee e
Burst FIFO-Read Transaction FUNCHONScccooiiiiiiiiiiiiiie e
Initialization for Burst FIFO-Read TranSactioNSccccovceeeiiiiiienieieiiieeesieee e
Burst FIFO-Read Transaction Example, Writing INPKTEND w/SKIP=0 to Commit
Burst FIFO-Read Transaction Example, Writing EPXBCL to Commit
FX2 CPU FEALUIESuiiiiiiiiiiieiiieiee e

FX2 to Standard 8051 Timing Comparison
FX2 Internal Data RAM
FX2 1O PiN oo

1/O Port OUtpUt-ENable REQISIEISccciiiiiiiiiiecieee et e s
1/O POrt Data REQISLEIS ...eiiiiiiiiiie ettt ettt e e et e e e e et e e e e s anntte e e e eannnbeeaeeannees
I/O-Pin Logic when Alternate Function is an OUTPUT ..o
I/O-Pin Logic when Alternate Function is an INPUT ...
GeNeral I2C TIANSTEIuiiiiiie it e e e e b e e

Addressing an 12C Peripheralcocciiiiiiiiiiiie ettt et

12C-Compatible REGISIEISooiiiiieiiie et e e e e e

Timer 0/1 - MOAES 0 @Nnd 1 ..ottt e e et e e e e nebee e e e eneees

List of Figures

Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 14-7.
Figure 14-8.
Figure 14-9.

Figure 14-10.
Figure 14-11.
Figure 14-12.
Figure 14-13.
Figure 14-14.
Figure 14-15.
Figure 14-16.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.

Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.
Figure 15-18.
Figure 15-19.
Figure 15-20.
Figure 15-21.
Figure 15-22.
Figure 15-23.
Figure 15-24.
Figure 15-25.

List of Figures

%‘F CYPRESS

(List of Figures)

TIMEN O/L - MOE 2 .ttt s e e eb e eabe e e naneeas
TIMEN 0 - MOOE 3 ..ottt et e st e e et e e e ste e e anbnee s
Timer 2 - Timer/Counter With Capturecooiiviiieiiiiiei e
Timer 2 - Timer/Counter with Auto Reload
Timer 2 - Baud Rate Generator MOAEoooueeiiiiiiiiiiiie e
Serial Port Mode 0 Receive Timing - Low Speed Operation
Serial Port Mode 0 Receive Timing - High Speed Operation
Serial Port Mode 0 Transmit Timing - Low Speed Operation
Serial Port Mode 0 Transmit Timing - High Speed Operationcccccvveeeeeciinnenn.. 14-19
Serial Port 0 Mode 1 TranSmit TIMINGcooouiiiieariiiiiee et erieeee e e e e e eeeeeee s
Serial Port 0 Mode 1 RECEIVE TIMING ...oeiiiiiiiiiiie et e et e e ee e et ee e e seaeeeae s
Serial Port 0 Mode 2 TranSmit TIMINGcooiueiiieaiiiiiiee e esiieeee e eee e e eeeeeee s
Serial Port 0 Mode 2 RECEIVE TIMING ..uvvviiiiiiiiiee et e ettt e e e eiiiree e e satvaee e e s e staaaeee s
Serial Port 0 Mode 3 Transmit TiMINGccooviiereeeiiiiiie e esiireee e e e e e srreeee s
Serial Port 0 Mode 3 Receive Timing
Register DescCription FOMMALc.eiiiiiiiiii e e e e e e e e
Single Instruction to Read POIt Boiiiiiiii et
Single Instruction to Write to Port C
Use Bit 2 to set PORTD - Single Instruction
USE OR 10 SEEBIt 3 ..ottt ettt e st e et e
GPIF Waveform DesCrptor Datac.ccoiiviiieeiiiiiiiie ettt e e e e e e

CPU CONLrol @Nd SEALUSociieiiiiieeeiiiieee ettt e e et ea e e e etbeeeee e e e sneeeaeeaaanneeeeaann
Interface Configuration (Ports, GPIF, slave FIFOS) ... 15-14
IFCLK CONFIQUIALION ...eiiiiiiiiiiiee ettt e e e et e e e e ee e e e ennees
Slave FIFO FLAGA-FLAGD Pin Configurationccccccvvvieeiiiiiiiee e eesiieeee e s eieeeeee
Restore FIFOS t0 RESEE STALEoveviiiiiiiiiiieieee e
Breakpoint CONEIOIiiiiiiiiiiie et e et e e e et e e e e santbaeeeeesanees
Breakpoint ADdreSs High ...
Breakpoint AAdreSSs LOWc.ueiieeiiiiiiiiee e

230 Kbaud Internally Generated Reference Clock
Slave FIFO Interface Pins Polarity
Chip Revision IDccccovvvveeiiiiiinenn.
Chip Revision Control
Endpoint 1-OUT/Endpoint 1-IN Configurationsccccceeiiiiiiiieeiniiiiee e
ENndpoint 2 CONfIQUIALIONooiiiiiiiiiie ettt e e e e e enees
ENndpoint 4 CoNfIQUIALIONcoiiiiiiiiiie ettt e e e e e e enees
ENdpoint 6 CoNfigUIrationcooiiiiiiieiiiiiiiie et s e e e e saae e e e enaee
ENndpoint 8 CoNfiQUIAtioNcccoiiiiiiieeiiiiiiiie st e e s r e e saae e e e enanes
Endpoint 2, 4, 6 and 8 /Slave FIFO Configuration
Endpoint 2 and 6 AUTOIN Packet Length High ...

Xvil

%‘F CYPRESS

(List of Figures)

Figure 15-26.
Figure 15-27.
Figure 15-28.
Figure 15-29.
Figure 15-30.
Figure 15-31.
Figure 15-32.
Figure 15-33.
Figure 15-34.
Figure 15-35.
Figure 15-36.
Figure 15-37.
Figure 15-38.
Figure 15-39.
Figure 15-40.
Figure 15-41.
Figure 15-42.
Figure 15-43.
Figure 15-44.
Figure 15-45.
Figure 15-46.
Figure 15-47.
Figure 15-48.
Figure 15-49.
Figure 15-50.
Figure 15-51.
Figure 15-52.
Figure 15-53.
Figure 15-54.
Figure 15-55.
Figure 15-56.
Figure 15-57.
Figure 15-58.
Figure 15-59.
Figure 15-60.
Figure 15-61.
Figure 15-62.
Figure 15-63.
Figure 15-64.
Figure 15-65.

XVii

Endpoint 4 and 8 AUTOIN Packet Length Highccccoeioiiiiiiiiiee e,
Endpoint 2, 4, 6, 8 AUTOIN Packet Length LOWcccceeoiiiiiiieiiiieee e
Endpoint 2/Slave FIFO Programmable Flag High
Endpoint 6/Slave FIFO Programmable Flag High
Endpoint 4/Slave FIFO Programmable Flag High
Endpoint 8/Slave FIFO Programmable Flag High
Endpoint 2, 4, 6, 8/Slave FIFO Programmable Flag Low .
MaXIMUM FIFO SIZES ..coiuiiiiiiiiiiiie ettt et sae e e
Endpoint ISO IN Packets Per Frameccooiiiiiiiiiiiiiii e
Force IN Packet EN ...t
FOrce OUT PaCKEt ENGooiiiiiiiiiieee ettt e e e e e e
Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enableccooiiiiini
Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt REQUESLooveeiiiiiiiiee e
IN-BULK-NAK INterrupt ENADIEocoiiiiiiiie ettt e
IN-BULK-NAK Interrupt Request
Endpoint Ping-NAK/IBN Interrupt Enable
Endpoint Ping-NAK/IBN Interrupt REQUESTooiiiiiiiiiiie e 15-46
USB Interrupt Enables
USB Interrupt Requests
Endpoint INterrupt ENADIEScoviiiiiiieice et
ENndpoint INterrupt REQUESESvviiiiiiicieiiee ettt
GPIF INterrupt ENADIE ...t e
GPIF INtErrupt REQUESTeiiiiiiieiiiii ettt e e e e e e e e e e e e snenenienneneees
USB Error INterrupt ENADIESeiiiiiiieiee et
USB Error INterrupt REQUESTooiuiiiiiiee ettt
USB Error Counter @and LIMiteeoiieeiieeiee et
Clear Error CoUNE EC3:0viiiiiiiiiieie ettt sttt e e sna e e sene e e
N I (U] =)] (0)Y/ =Tox (o] S SRR
INT 4 (slave FIFOs & GPIF) Autovector .
INT 2 QN0 INT 4 SEEUPD -eeteiieeiiiii et et e ettt e e e e e sbee e e e e e e anneeeaeeaanneeaaaaan
I/O PORTA Alternate Configurationcccueeeeiiiiiiieeeiiiiiiie e esiireee e siieeee e eevaaeee s
1/0 PORTC Alternate Configuration
I/O PORTE Alternate Configurationccccceeeeiiiiiiieee i esiiieee et ee e evaaeee s
[2C-Compatible Bus Control and Status
12C-ComPpPatible BUS DALAcccciiueeiiiiiiiiieieee et e e e e e e e e e e eas
12C-Compatible BUS CONIOLeeiiieiiieieee e e
AUTOPTR1 & AUTOPTR2 MOVX access (when APTREN=1)ccccevivirninennnnennn 15-60
USB CONLrol @Nd SEAUSeeiiieiiiiiee ittt ettt e iee e 15-63
ENter SUSPENT STALEeeeiieeii ittt e e e e e e e e e neaee s 15-64
Wakeup COoNtrol & STALUSuuiiiiiiiiiie ettt et e e e e et e e e e e e naeeeeeaan 15-64

List of Figures

Figure 15-66.
Figure 15-67.
Figure 15-68.
Figure 15-69.
Figure 15-70.
Figure 15-71.
Figure 15-72.
Figure 15-73.
Figure 15-74.
Figure 15-75.
Figure 15-76.
Figure 15-77.
Figure 15-78.
Figure 15-79.
Figure 15-80.
Figure 15-81.
Figure 15-82.
Figure 15-83.
Figure 15-84.
Figure 15-85.
Figure 15-86.
Figure 15-87.
Figure 15-88.
Figure 15-89.
Figure 15-90.
Figure 15-91.
Figure 15-92.
Figure 15-93.
Figure 15-94.
Figure 15-95.
Figure 15-96.
Figure 15-97.
Figure 15-98.
Figure 15-99.

Figure 15-100.
Figure 15-101.
Figure 15-102.
Figure 15-103.
Figure 15-104.
Figure 15-105.

List of Figures

%‘F CYPRESS

(List of Figures)

(D= 1= W ol [0 | [T @001 { o PP PUPRPROE
USB Frame Count HIGHiiiiiiiiii et e e
USB Frame COUNE LOW ...ccoouiiiiieiiiiiiiie ettt e st e et e s ee e e e
USB Microframe Count
USB FUNCHON AQAIESS ...ttt e e s e e e e et e e e e enneeeeae e e sanees
Endpoint O (Byte Count High) ..o
Endpoint 0 Control and Status (Byte Count Low)
Endpoint L OUT/IN BYte COUNLuviiiiiiiiiiiiie ettt e ettt e e eee e e e et e e e e snnnaaee e e s snnnes
Endpoint 2 and 6 Byte Count Highccciiiiiiiiiiic e
Endpoint 4 and 5 Byte Count High ...
Endpoint 2, 4, 6, 8 BYte COUNE LOW ...coiiiiiiiiiiiiiiiiie ettt e e
Endpoint 0 Control and SEAtUScooiiiiiiiiiiiiiiii e
Endpoint 1 OUT/IN Control and STatusScecoiiiiiiiiiiiiiiiiieec e e e
Endpoint 2 Control and Status
Endpoint 4 Control and Status
Endpoint 6 Control and Status
Endpoint 8 Control and Status
Endpoint 2 and 4 Slave FIFO Flags
Endpoint 6 and 8 Slave FIFO Flags
Endpoint 2 Slave FIFO Total Byte Count Highcoooiiiiiiiiiiiee e
Endpoint 6 Slave FIFO Total Byte Count Highcoooiiiiiiiiiiiie e
Endpoint 4 and 8 Slave FIFO Byte Count Highcccoiiiiiiiiiii e
Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low
Setup Data Pointer High AddreSs BYLeceeiiiiiiiiiii e
Setup Data Pointer LOW AdAress BYLEccuviiiiiiiiiiiii et e
Setup Data Pointer AUTO MOGEuuiiiiiiiiiiiiie ettt etea e et ee e e s etvanae e
SEtUP DAt@ - 8 BYIES ..iviiiiiiiiiiiiiiiiiiie sttt a e e
GPIF Waveform Selector
GPIF Done and Idle Drive
CTL Output States in Idle
CTL OULPUL DIVE TYPE oreiiiiieiiiiie e ettt e ee ittt e e ettt ae e e e et aae e e e esaaaa e e e e e s sntaaae e e s etaaneeaann
GPIF Address High
GPIF Address Low
GPIF Transaction CouNt BYIE3 ...ttt e e e

GPIF Transaction COUNt BYIE2uiiiiiiiiiiiiie ettt e e e eeee e e

GPIF Transaction CoUNt BYIELueiiiiiiiiiiiiee ettt e e e ee e

GPIF Transaction CoUNt BYIEOcuuiiieiiiiiiiee ettt et e e e s erae e e e

Endpoint 2, 4, 6, 8 GPIF Flag SEIECEooviiiiiiiiiie et

Endpoint 2, 4, 6, and 8 GPIF Stop TranSacCtionccccceeeiiiiiieeeeeiiiiiee e eiiiee e

Endpoint 2, 4, 6, and 8 Slave FIFO GPIF TrHQQercccuiiiaiiiiiiiee e eiiiiie e 15-98

Xix

%‘F CYPRESS

(List of Figures)

Figure 15-106.
Figure 15-107.
Figure 15-108.
Figure 15-109.
Figure 15-110.
Figure 15-111.
Figure 15-112.
Figure 15-113.
Figure 15-114.
Figure 15-115.
Figure 15-116.
Figure 15-117.
Figure 15-118.

XX

GPIF Data High (16-Bit MOOE)ccieiiiiiiiiee ittt e 15-99
Read/Write GPIF Data LOW & Trigger TranSactioncccccvveeviiiiiiereesiiinereeesesinens 15-99
Read GPIF Data LOW, NO Transaction THQQErcccuuieeeeriurieeeeiiiiiiee e e siireeeeeeeenveees 15-100

GPIF Ready Pinsccccoocee.
GPIF Ready Status Pins
ADOIM GPIF .

EPO IN/OUT Bufferc.c....

EPL-OUT BUFEI ettt
EPL-IN BUFFET oot
512/1024-byte EP2/Slave FIFO BUFfErcccoiiiiiiiiiie e 15-103
512-byte EP4/Slave FIFO BUFfErooiiiiiiiiiee e 15-104
512/1024-byte EP6/Slave FIFO BUFfErcccooiiiiiiiieiie e 15-104
512-byte EP8/SIave FIFO BUFfEIcoociiiiiiic ettt 15-105

List of Figures

List of Tables

Table 1-1.
Table 1-2.
Table 1-3.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 4-1.

USB PIDS . .t 1-3
Endpoint 2, 4, 6, and 8 Configuration Choices 1-24
EZ-USB FEX2 Family 1-28
The Eight BytesinaUSB SETUP Packet i, 2-5
How the Firmware Handles USB Device Requests (RENUM=1) 2-6
Get Status-Device (Remote Wakeup and Self-Powered Bits) 2-8
Get Status-Endpoint (Stall BitS) e 2-8
Get Status-Interface 2-9
Set Feature-Device (Set Remote Wakeup Bit) 2-10
Set Feature-Endpoint (Stall) 2-10
Clear Feature-Device (Clear Remote Wakeup Bit) 2-11
Clear Feature-Endpoint (Clear Stall) i 2-12
Get DesCriptor-DeVICEot 2-14
Get Descriptor-Device Qualifier 2-15
Get Descriptor-Configuration i 2-15
Get DesCriptor-Stringot 2-16
Get Descriptor-Other Speed Configuration 2-16
Set Descriptor-DeviCe 2-17
Set Descriptor-Configuration 2-17
Set DeSCrPtOr-StriNg . . . oot 2-18
Set Configuration 2-20
Get Configuration e 2-20
Set Interface (Actually, Set Alternate Setting #AS for Interface #IF) 2-21
Get Interface (Actually, Get Alternate Setting #AS for interface #IF) 2-22
SYNC Frame . .. e e 2-23
Firmware Download e 2-24
Firmware Upload 2-24
Default Full-speed Alternate Settings 3-3
Default High-speed Alternate Settings i 3-3
FX2 Device Characteristics, No EEPROM / Invalid EEPROM 3-4
“COLOAd” FOMMAL . ..ottt e e e e e 3-5
“C2L0oad” FOMMALottt e e e 3-6
How the Default USB Device Handles EPO Requests When RENUM=0 3-10
Firmware Download e 3-11
Firmware Upload e 3-11
FX2 INterTUPLS . . . e 4-1

XXiii

%‘F CYPRESS

(List of Tables)

Table 4-2. IERegister — SFR OXABot 4-2
Table 4-3. IPRegister — SFR OXB8 4-3
Table 4-4. EXIFRegister — SFR OXOL i e 4-3
Table 4-5. EICON Register — SFR OXD8 e e 4-4
Table 4-6. EIE Register — SFR OXE8 e 4-4
Table 4-7. EIP Register — SFR OXF8o e 4-5
Table 4-8. Summary of Interrupt Compatibility 4-5
Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors 4-7
Table 4-10. Individual USB INterrupt SOUMCESottt e e e e 4-9
Table 4-11. Endpoint INterruptso 4-14
Table 4-12. FX2 JUMP INStrUCtiono 4-15
Table 4-13. A Typical USB-Interrupt Jump Table i 4-16
Table 4-14. Individual FIFO/GPIF INterrupt SOUICES o oot e e e e 4-19
Table 4-15. FX2 JUMP INStrUCION . . . oo e e 4-20
Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table 4-21
Table 7-1. Effects of Various Resets on FX2 Resources (“—" means “no change”) 7-5
Table 8-1. Maximum Packet Sizesfor USB 1.1and 2.0 8-2
Table 8-2. Endpoint Configuration Registers 8-3
Table 8-3. Endpoint Buffers in RAM Space 8-4
Table 8-4. Registers that control EPOand EPL e 8-5
Table 8-5. Registers that control EP2,EP4,EP6andEP8 iiiionn. 8-10
Table 8-6. Isochronous IN Packets per Microframe, High-Speed Only 8-11
Table 8-7. Registers that control all endpoints 8-13
Table 8-8. Registers used to control the Setup Data Pointer 8-18
Table 8-9. Registers that control the Autopointers i 8-20
Table 9-1. Registers Associated with Slave FIFO Hardware 9-2
Table 9-2. FIFO Selection via FIFOADR[L:0]ttt e 9-8
Table 9-3. Registers Associated with Slave FIFO Firmware 9-19
Table 10-1. Registers Associated with GPIF Hardware i, 10-5
Table 10-2. GPIF Pin DeSCriplioNSot e e 10-5
Table 10-3. CTLIS:0] OUtPUt MOES . ..ot e e e e e e e 10-7
Table 10-4. Example GPIF Hardware Interconnect 10-10
Table 10-5. Control Outputs (CTLn) Duringthe IDLE State i, 10-14
Table 10-6. Waveform Descriptor AddreSSeSottt e 10-25
Table 10-7. Waveform Descriptor O Structure 10-25
Table 10-8. Registers Associated with GPIF Firmware 10-26
Table 11-1. FX2 Speed Compared to Standard 8051 it 11-3
Table 11-2. Comparison Between FX2 and Other 803x/805x Devices 11-5
Table 11-3. Differences between FX and DS80C320 Interrupts iinan.. 11-6
Table 11-4. EZ-USB FX2 INterrUPLS . .. oottt e e e e e 11-9
XXiv List of Tables

Table 11-5.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.

Table 13-10.
Table 13-11.
Table 13-12.

Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.

Table 14-10.
Table 14-11.
Table 14-12.
Table 14-13.
Table 14-14.
Table 14-15.
Table 14-16.

Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.

List of Tables

%‘F CYPRESS

(List of Tables)
FX2 Special Function Registers (SFR) i i 11-10
Legend for Instruction SetTable 12-1
FX2 INStrUCtioN St ot 12-2
Data Memory Stretch Values e 12-6
PSW Register - SFR OXDOt e 12-8
Register Bits Which Select Port A Alternate Functions 13-7
Port A Alternate-Function Configuration 13-7
Register Bits Which Select Port B and Port D Alternate Functions 13-8
Port B Alternate-Function Configuration 13-8
Port D Alternate-Function Configuration 13-8
Register Bits Which Select Port C Alternate Functions 13-9
Port C Alternate-Function Configuration 13-9
Register Bits Which Select Port E Alternate Functions 13-10
Port E Alternate-Function Configuration 13-10
IFCFG Selection of Port I/O Pin FUNCLIONSot 13-11
Strap Boot EEPROM Address Linesto These Values 13-17
Results of Power-On-Reset EEPROM Test 13-18
Timer/Counter Implementation Comparison 14-2
TMOD Register — SFR OX89 i e e e e 14-4
TCON Register — SRF OX88 i e e e 14-5
CKCON (SFR 0x8E) Timer Rate Control Bits i, 14-7
T2CON Register — SFR OXC8 e e 14-9
Timer 2 Mode Control SUMMary e 14-9
Serial POt MOdesS e 14-13
Serial Interface Implementation Comparisont 14-13
UART?230 Register — Address OXEB08c.0 i, 14-14
Allowable Baud-Clock Combinations for Modes 1and3 14-14
SCONO Register — SFR98h e 14-16
EICON (SFR OXD8) SMODL Bit ...ttt it e e i e 14-16
PCON (SFR OXx87) SMODO Bitottt e e e e 14-16
SCON1 Register — SFR COh e e 14-17
Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates 14-21
Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates 14-22
FX2 Special Function Registers (SFR) 15-3
SFR and FX2 Register File Correspondencesiiiiiieean.. 15-7
SFR Registers and External Ram Equivalent 15-12
CPU CloCK SPEEASo e 15-14
Internal FIFO/GPIF Clock Frequencyt e 15-15
Port E Alternate Functions When GSTATE=1 15-16
Ports, GPIF, Slave FIFO Select e 15-16

XXV

%‘F CYPRESS

(List of Tables)

Table 15-8.
Table 15-9.

Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-14.
Table 15-15.
Table 15-16.
Table 15-17.
Table 15-18.
Table 15-19.
Table 15-20.

Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table A-21
Table A-22
Table A-23

XXVi

IFCFG Selection of Port /O Pin Functions 15-17
FIFO Flag Pin FUNCLIONS oot e e e e 15-19
FIFOADR1 FIFOADRO Pin Correspondencet it 15-19
Endpoint Type Definitions e 15-26
Endpoint Type Definitions e 15-28
Endpoint Buffering Amounts 15-28
Interpretation of PF for IN Endpoints i 15-39
IN Packets per Microframe i 15-41
CTLIS:0] OUtPUt MOESt e e e e e e 15-85
Control Outputs (CTLx) Duringthe IDLE State 15-86
Control Outputs (CTLx) During the Flow State 15-91
Endpoint 2, 4, 6, 8 GPIF Flag Select Values 15-97
Registers Which Require a SynchronizationDelay 15-105
Default USB Device DeSCIiptort e 1
Device Qualifier e 2
USB Default Configuration Descriptort 2
USB Default Interface 0, Alternate Setting O 3
USB Default Interface 0, Alternate Setting 1 3
Endpoint Descriptor (EPL OUL) e 3
Endpoint Descriptor (EPLiN) e 4
Endpoint Descriptor (EP2) 4
Endpoint Descriptor (EP4) e 4
Endpoint Descriptor (EPB)t 5
Endpoint Descriptor (EP8) 5
Interface Descriptor (Alt. Setting 2) 5
Endpoint Descriptor (EPL1OUL)t e 6
Endpoint Descriptor (EPLin) e 6
Endpoint Descriptor (EP2. 6
Endpoint Descriptor (EP4) 7
Endpoint Descriptor (EP6)o 7
Endpoint Descriptor (EP8) e 7
Interface Descriptor (Alt. Setting 3) i 8
Endpoint Descriptor (EPL 0Ut) 8
Endpoint Descriptor (EPLiN) e 8
Endpoint Descriptor (EP2) 9
Endpoint Descriptor (EP4) 9

List of Tables

Table A-24
Table A-25

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9
Table B-10
Table B-11
Table B-12
Table B-13
Table B-14
Table B-15
Table B-16
Table B-17
Table B-18
Table B-19
Table B-20
Table B-21
Table B-22
Table B-23
Table B-24
Table B-25

List of Tables

Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Device Descriptor.
Device Qualifier
Configuration Descriptor
Interface Descriptor (Alt. Setting 0)
Interface Descriptor (Alt. Setting 1)
Endpoint Descriptor (EP1 out)
Endpoint Descriptor (EP1 in)

Endpoint Descriptor (EP2)
Endpoint Descriptor (EP4)
Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Interface Descriptor (Alt. Setting 2)
Endpoint Descriptor (EP1 out)
Endpoint Descriptor (EP1 in)

Endpoint Descriptor (EP2)
Endpoint Descriptor (EP4)
Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

Interface Descriptor (Alt. Setting 3)
Endpoint Descriptor (EP1 out)
Endpoint Descriptor (EP1 in)

Endpoint Descriptor (EP2)
Endpoint Descriptor (EP4)
Endpoint Descriptor (EP6)
Endpoint Descriptor (EP8)

%‘F CYPRESS

(List of Tables)

XXVii

;fﬁ‘f PRESS

—_—

XXViii List of Tables

Chapter 1 Introducing EZ-USB FX2

1.1 Introduction

The Universal Serial Bus (USB) has gained wide acceptance as the connection method of choice
for low and medium speed PC peripherals. Equally successful in the Windows and Macintosh
worlds, USB has delivered on its promises of easy attachment, an end to configuration hassles,
and true plug-and-play operation.

The second generation of the USB specification, “USB 2.0", extends the original specification to
include:

e 480 Mbits/sec signaling rate, a 40x improvement over the USB 1.1 rate of 12 Mbits/sec.
* Full backward and forward compatibility with USB 1.1 devices and cables.

« A new hub architecture that can provide multiple 12 Mbits/sec downstream ports for USB
1.1 devices.

The Cypress Semiconductor EZ-USB FX2 (often abbreviated as “FX2” in this manual) is a single-
chip USB 2.0 peripheral whose architecture is similar to that of the Cypress Semiconductor EZ-
USB FX family. Although much of the FX architecture is preserved, certain elements have been
redesigned to accommodate the higher data rates offered by USB 2.0.

This introductory chapter begins with a brief USB tutorial to put USB and FX2 terminology into con-
text. The remainder of the chapter briefly outlines the FX2 architecture.

1.2 An Introduction to USB

Like a well-designed automobile or appliance, a USB peripheral’s outward simplicity hides internal
complexity. There’s a lot going on “under the hood” of a USB device.

* A USB device can be plugged in anytime, even while the PC is turned on.

« When the PC detects that a USB device has been plugged in, it automatically interrogates
the device to learn its capabilities and requirements. From this information, the PC auto-

Chapter 1. Introducing EZ-USB FX2 Page 1-1

EZ-USB FX2 Technical Reference Manual
matically loads the device’s driver into the operating system. When the device is
unplugged, the operating system automatically logs it off and unloads its driver.

» USB devices do not use DIP switches, jumpers, or configuration programs. There is never
an IRQ, DMA, memory, or 1/O conflict with a USB device.

« USB expansion hubs make the bus simultaneously available to dozens of devices.
» USB is fast enough for printers, hard disk drives, CD-quality audio, and scanners.
» With the introduction of the USB 2.0 Specification, USB supports three speeds:

- Low Speed (1.5 Mbits/sec), suitable for mice, keyboards and joysticks.
- Full Speed (12 Mbits/sec), for devices like modems, speakers and scanners.

- High Speed (480 Mbits/sec), for devices like hard disk drives, CD-ROMs, video cam-
eras, and high-resolution scanners.

The Cypress Semiconductor EZ-USB FX2 augments the EZ-USB family by supporting the high
bandwidth offered by the USB 2.0 High Speed mode. The FX2 provides a highly-integrated solu-
tion for a USB peripheral device. Like all EZ-USB devices, the FX2 offers the following features:

« Anintegrated, high-performance CPU based on the industry-standard 8051 processor.
» A soft (RAM-based) architecture that allows unlimited configuration and upgrades.

* Full USB throughput. USB devices that use EZ-USB chips are not limited by number of
endpoints, buffer sizes, or transfer speeds.

e Automatic handling of most of the USB protocol, which simplifies code and accelerates
the USB learning curve.

1.3 The USB Specification

The Universal Serial Bus Specification Version 2.0 is available on the Internet from the USB Imple-
menters Forum, Inc., at http://www.usb.org. Published in April, 2000, the USB Specification is
the work of a founding committee of seven industry heavyweights: Compag, Hewlett-Packard,
Lucent, Philips, Intel, Microsoft, and NEC. This impressive list of developers secures USB’s posi-
tion as the low- to high-speed PC connection method of the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly as simple
as the older serial or parallel ports. The USB Specification uses new terms like endpoint, isochro-
nous, and enumeration, and finds new uses for old terms like configuration, interface, and inter-
rupt. Woven into the USB fabric is a software abstraction model that deals with things such as
pipes. The USB Specification also contains information about such details as connector types and
wire colors.

Page 1-2 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

1.4 HostIs Master

This is a fundamental USB concept. There is exactly one master in a USB system: the host com-
puter. USB devices respond to host requests. USB devices cannot send information among
themselves, as they could if USB were a peer-to-peer topology.

However, there is one case where a USB device can initiate signaling without prompting from the
host. After being put into a low-power “suspend” mode by the host, a device can signal a “remote
wakeup”. This is the only case in which the USB device is the initiator; in all other cases, the host
makes device requests and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly mindful of
cost, and the best way to make low-cost peripherals is to put most of the “smarts” into the host
side, the PC. If USB had been defined as peer-to-peer, every USB device would have required
more intelligence, raising cost.

1.5 USB Direction

Because the host is always the bus master, it's easy to remember USB direction: OUT means from
the host to the device, and IN means from the device to the host. FX2 nomenclature uses this
naming convention. For example, an endpoint that sends data to the host is an IN endpoint. This
can be confusing at first, because the FX2 sends data to the host by loading an IN endpoint buffer.
Likewise, the FX2 receives host data from an OUT endpoint buffer.

1.6 Tokens and PIDs

In this manual, you'll read statements such as: “When the host sends an IN token...,” or “The
device responds with an ACK”. What do these terms mean?

A USB transaction consists of data packets identified by special codes called Packet IDs or PIDs.
A PID signifies what kind of packet is being transmitted. There are four PID types, shown in
Table 1-1.

Table 1-1. USB PIDS

PID Type PID Name
Token IN, OUT, SOF, SETUP
Data DATAO, DATAL, DATA2, MDATA
Handshake ACK, NAK, STALL, NYET
Special PRE, ERR, SPLIT, PING

Bold type indicates PIDs introduced with USB 2.0

Chapter 1. Introducing EZ-USB FX2 Page 1-3

EZ-USB FX2 Technical Reference Manual

D Cc D C
AllE|lC AllE|| C
(¢} A R A
8 p|| N|| R '_'? Payload z é ¥ 0| ~| R|||§M| Payioad || 2| |2
D|| D|| C Data D|| D|l C Data
" IRIE 2 1 K T eSS A 1 K
1 6 0 6
Token Packet Data Packet /S Pk Token Packet Data Packet H/S Pk

® ©) ® O) ® O)

Figure 1-1. USB Packets

Figure 1-1 illustrates a USB OUT transfer. Host traffic is shown in solid shading, while device traf-
fic is shown crosshatched. Packet 1 is an OUT token, indicated by the OUT PID. The OUT token
signifies that data from the host is about to be transmitted over the bus. Packet 2 contains data, as
indicated by the DATAL PID. Packet 3 is a handshake packet, sent by the device using the ACK
(acknowledge) PID to signify to the host that the device received the data error-free.

Continuing with Figure 1-1, a second transaction begins with another OUT token 4, followed by
more data 5, this time using the DATAO PID. Finally, the device again indicates success by trans-
mitting the ACK PID in a handshake packet 6.

When operating at full speed, every OUT transfer sends the OUT data, even when the device is
busy and can't accept the data. When operating at high speed, this slightly wasteful use of USB
bandwidth is remedied by using the new “Ping” PID. The host first sends a short PING token to an
OUT endpoint, asking if there is room for OUT data in the peripheral device. Only when the PING
is answered by an ACK does the host send the OUT token and data.

There are two DATA PIDs (DATAO and DATAL) in Figurel-1 because the USB architects took
error correction very seriously. As mentioned previously, the ACK handshake is an indication to
the host that the peripheral received data without error (the CRC portion of the packet is used to
detect errors). But what if the handshake packet itself is garbled in transmission? To detect this,
each side (host and device) maintains a data toggle bit, which is toggled between data packet
transfers. The state of this internal toggle bit is compared with the PID that arrives with the data,
either DATAO or DATAL. When sending data, the host or device sends alternating DATAO-DATA1
PIDs. By comparing the received Data PID with the state of its own internal toggle bit, the receiver
can detect a corrupted handshake packet.

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from which
the peripheral decodes host Device Requests.

At full speed, SOF (Start of Frame) tokens occur once per millisecond. At high speed, each frame
contains eight SOF tokens, each denoting a 125-microsecond microframe.

Four handshake PIDs indicate the status of a USB transfer:
« ACK (“Acknowledge”) means success; the data was received error-free.

* NAK (“Negative Acknowledge”) means “busy, try again.” It's tempting to assume that NAK
means “error,” but it doesn’t; a USB device indicates an error by not responding.

Page 1-4 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

» STALL means that something unforeseen went wrong (probably as a result of miscommu-
nication or lack of cooperation between the host and device software). A device sends the
STALL handshake to indicate that it doesn’t understand a device request, that something
went wrong on the peripheral end, or that the host tried to access a resource that wasn't
there. It's like HALT, but better, because USB provides a way to recover from a stall.

* NYET (“Not Yet") has the same meaning as ACK — the data was received error-free —
but also indicates that the endpoint is not yet ready to receive another OUT transfer. NYET
PIDs occur only in high speed mode.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbits/sec) USB transmission. The FX2 sup-
ports full-speed (12 Mbits/sec) and high-speed (480 Mbits/sec) USB transfers only.

1.6.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token followed by the data. If the periph-
eral has space for the data and accepts it without error, it returns an ACK to the host. If it is busy, it
sends a NAK. If it finds an error, it sends back nothing. For the latter two cases, the host re-sends
the data at a later time.

1.6.2 Sending Datato the Host

A USB device never spontaneously sends data to the host. Either FX2 firmware or external
logic can load data into an FX2 endpoint buffer and ‘arm’ it for transfer at any time. However, the
data is not transmitted to the host until the host issues an IN request to the FX2 endpoint. If the
host never sends the IN token, the data remains in the FX2 endpoint buffer indefinitely.

1.7 USB Frames

The USB host provides a time base to all USB devices by transmitting an SOF (“Start of Frame”)
packet every millisecond. SOF packets include an 11-bit number which increments once per
frame; the current frame number [0-2047] may be read from internal FX2 registers at any time.

At high speed (480 Mbits/sec), each one-millisecond frame is divided into eight 125-microsecond
microframes, each of which is preceded by an SOF packet. The frame number still increments only
once per millisecond, so each of those SOF packets contains the same frame number. To keep
track of the current microframe number [0-7], the FX2 provides a readable microframe counter.

The FX2 can generate an interrupt request whenever it receives an SOF (once every millisecond

at full speed, or once every 125 microseconds at high speed). This SOF interrupt can be used, for
example, to service isochronous endpoint data.

Chapter 1. Introducing EZ-USB FX2 Page 1-5

EZ-USB FX2 Technical Reference Manual

1.8 USB Transfer Types

USB defines four transfer types. These match the requirements of different data types delivered
over the bus.

1.8.1 Bulk Transfers

D C D C
Al E|| C
0 Payload R B © D|| N||R B Payload R A
U Data ¢ € Y D|| D|| C U Data ¢ ©
A 1 K T rllPll 5 A 1 K
1 6 0 6
Data Packet IS Pk Token Packet Data Packet /S Pk

Figure 1-2. Two Bulk Transfers, IN and OUT

Bulk data is bursty, traveling in packets of 8, 16, 32 or 64 bytes at full speed or 512 bytes at high
speed. Bulk data has guaranteed accuracy, due to an automatic retry mechanism for erroneous
data. The host schedules bulk packets when there is available bus time. Bulk transfers are typi-
cally used for printer, scanner, or modem data. Bulk data has built-in flow control provided by
handshake packets.

1.8.2 Interrupt Transfers

Payload

A
©
Data K

U OO >
oozm
a0OxvWO
= >»->»0
E RN el Ne)

Token Packet Data Packet /S Pkt

Figure 1-3. An Interrupt Transfer

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes at full speed or up to
1024 bytes at high speed. Interrupt endpoints have an associated polling interval that ensures
they will be polled (receive an IN token) by the host on a regular basis.

Page 1-6 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

1.8.3 Isochronous Transfers

Al E||C 2 g
I[|D|[N|IR T Payload c
N||D||D||C Data

RI|P||5 0 L

0 6
Token Packet Data Packet

Figure 1-4. An Isochronous Transfer

Isochronous data is time-critical and used to stream data like audio and video. An isochronous
packet may contain up to 1023 bytes at full speed, or up to 1024 bytes at high speed.

Time of delivery is the most important requirement for isochronous data. In every USB frame, a
certain amount of USB bandwidth is allocated to isochronous transfers. To lighten the overhead,
isochronous transfers have no handshake (ACK/NAK/STALL/NYET), and no retries; error detec-

tion is limited to a 16-bit CRC.

Isochronous transfers do not use the data-toggle mechanism. Full-speed isochronous data uses
only the DATAO PID; high-speed isochronous data uses DATAO, DATA1, DATA2 and MDATA.

In full-speed mode, only one isochronous packet can be transferred per endpoint, per frame. In
high-speed mode, up to three isochronous packets can be transferred per endpoint, per microf-

rame.

1.8.4 Control Transfers

r
J
2/

NN D c
AllE|C
E A|l 8bytes || R A
T g g E T|| Setup C C SETUP
U A|| Data 1 K Stage
el PlE) |l of | L ’
\Token Packet) Data Packet /S Pkt
(— — —— p— 'd
D C
AllE|C
il olIn|| R $ Payload 2 é DATA
NjD|iojic|ia Data . b Stage
RPN | 6 (optional)
\Token Packet Data Packet \H/S Pkt
—— ———— (—
of AlElc|[all&ll] 1a
ull PINIRI Tl e c STATUS
/ool ciialls % S
RIPISIHIL]| 6 tage
\.Token Packet) \Data Pkt) \H/S Pkt

Figure 1-5. A Control Transfer

Chapter 1. Introducing EZ-USB FX2 Page 1-7

EZ-USB FX2 Technical Reference Manual

Control transfers configure and send commands to a device. Because they're so important, they
employ the most extensive USB error checking. The host reserves a portion of each USB frame
for Control transfers.

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB
CONTROL data. An optional DATA stage contains more data, if required. The STATUS (or “hand-
shake”) stage allows the device to indicate successful completion of a CONTROL operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windows™ cursor switches to an hour-
glass and then back to a cursor. Magically, your device is connected and its Windows™ driver is
loaded! Anyone who has installed a sound card into a PC and has had to configure countless
jumpers, drivers, and 10/Interrupt/DMA settings knows that a USB connection is miraculous.
We've all heard about Plug and Play, but USB delivers the real thing.

How does all this happen automatically? Inside every USB device is a table of descriptors. This
table is the sum total of the device’s requirements and capabilities. When you plug into USB, the
host goes through a sign-on sequence:

1. The host sends a Get Descriptor-Device request to address zero (all USB devices must
respond to address zero when first attached).

2. The device responds to the request by sending ID data back to the host to identify itself.

3. The host sends a Set Address request, which assigns a unique address to the just-attached
device so it may be distinguished from the other devices connected to the bus.

4. The host sends more Get Descriptor requests, asking for additional device information. From
this, it learns everything else about the device: number of endpoints, power requirements,
required bus bandwidth, what driver to load, etc.

This sign-on process is called Enumeration.

1.9.1 Full-Speed / High-Speed Detection

The USB 2.0 Specification requires that high-speed (480 Mbit/sec) devices must also be capable
of enumerating at full-speed (12 Mbit/s). In fact, all high-speed devices begin the enumeration pro-
cess in full-speed mode; devices switch to high-speed operation only after the host and device
have agreed to operate at high speed. The high-speed negotiation process occurs during USB
reset, via the “Chirp” protocol described in Chapter 7 of the USB 2.0 Specification.

When connected to a full-speed host, the FX2 will enumerate as a full-speed device. When con-
nected to a high-speed host, the FX2 automatically switches to high-speed mode.

Page 1-8 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

1.10 The Serial Interface Engine (SIE)

D [¢ \ c \
Al E|lC | Al E|lC |
OIYENIENN 2| Payload (NI *] S ol N|| R Payload |BNIIIN |
u T C Cj u C (of
| D|| D|| C|ff N Data 1 Kl M| D\ D|| C Data 1 K|
R[| P||5 R| P} 5
i 6 } 6 }
Token Packet Data Packet H/S Pkt Token Packet Data Packet H/S Pkt
=
& N Serial
\)] JV Interface Payload
. Data
D- iF Engine
> (SIE)
UsB
Transceiver

Figure 1-6. What the SIE Does

Every USB device has a Serial Interface Engine (SIE) which connects to the USB data lines (D+
and D-) and delivers data to and from the USB device. Figure 1-6 illustrates the SIE’s role: it
decodes the packet PIDs, performs error checking on the data using the transmitted CRC bits, and
delivers payload data to the USB device.

Bulk transfers are asynchronous, meaning that they include a flow control mechanism using ACK
and NAK handshake PIDs. The SIE indicates busy to the host by sending a NAK handshake
packet. When the USB device has successfully transferred the data, it commands the SIE to send
an ACK handshake packet, indicating success. If the SIE encounters an error in the data, it auto-
matically indicates no response instead of supplying a handshake PID. This instructs the host to
retransmit the data at a later time.

To send data to the host, the SIE accepts bytes and control signals from the USB device, formats it
for USB transfer, and sends it over D+ and D-. Because USB uses a self-clocking data format
(NRZI), the SIE also inserts bits at appropriate places in the bit stream to guarantee a certain num-
ber of transitions in the serial data. This is called “bit stuffing,” and is handled automatically by the
FX2's SIE.

One of the most important features of the FX2 (and the other EZ-USB chips) family is that its con-
figuration is soft. Instead of requiring ROM or other fixed memory, it contains internal program/data

Chapter 1. Introducing EZ-USB FX2 Page 1-9

EZ-USB FX2 Technical Reference Manual

RAM which can be loaded over the USB. This makes modifications, specification revisions, and
updates a snap.

The FX2's “smart” SIE performs much more than the basic functions shown in Figur e1-6; it can
perform a full enumeration by itself, which allows the FX2 to connect as a USB device and down-
load code into its RAM while its CPU is held in reset. This added SIE functionality is also made
available to the FX2 programmer, to make development easier and save code and processing
time.

1.11 ReNumeration™

Because the FX2's configuration is soft, one chip can take on the identities of multiple distinct USB
devices.

When first plugged into USB, the FX2 enumerates automatically and downloads firmware and
USB descriptor tables over the USB cable. Next, the FX2 enumerates again, this time as a device
defined by the downloaded information. This patented two-step process, called ReNumeration™,
happens instantly when the device is plugged in, with no hint that the initial download step has
occurred.

Alternately, FX2 can also load its firmware from an external EEPROM.

Chapter 3, "Enumeration and ReNumeration™" describes these processes in detail.

Page 1-10 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

1.12 EZ-USB FX2 Architecture

\ ouT
D+ ‘ Serial | data Program &

D- Interface usB Data

Engine IN Interface RAM
UsB < SIE) [¢ daa |
Connector CPU L
(Enhanced 1/O Ports)
usB 8051)
Transceiver Slave

EZ-USB FX2 FiFos GPIF

7y
‘ ©
= v
CTL RDY

Figure 1-7. FX2 56-pin Package Simplified Block Diagram

The FX2 packs all the intelligence required by a USB peripheral interface into a compact inte-
grated circuit. As Figure 1-7 illustrates, an integrated USB transceiver connects to the USB bus
pins D+ and D-. A Serial Interface Engine (SIE) decodes and encodes the serial data and performs
error correction, bit stuffing, and the other signaling-level tasks required by USB. Ultimately, the
SIE transfers parallel data to and from the USB interface.

The FX2 SIE operates at Full Speed (12 Mbits/sec) and High Speed (480 Mbits/sec) rates.To
accommodate the increased bandwidth of USB 2.0, the FX2 endpoint FIFOs and slave FIFOs
(which interface to external logic or processors) are unified to eliminate internal data transfer times.

The CPU is an enhanced 8051 with fast execution time and added features. It uses internal RAM
for program and data storage.

The role of the CPU in a typical FX2-based USB peripheral is twofold:

« Itimplements the high-level USB protocol by servicing host requests over the control
endpoint (endpoint zero)

e ltis available for general-purpose system use

The high-level USB protocol is not bandwidth-critical, so the FX2's CPU is well-suited for handling
host requests over the control endpoint. However, the data rates offered by USB 2.0 are too high
for the CPU to process the USB data directly. For this reason, the CPU is not usually in the high-
bandwidth data path between endpoint FIFOs and the external interface. Instead, the CPU simply
configures the interface, then “gets out of the way” while the unified FX2 FIFOs move the data
directly between the USB and the external interface.

Chapter 1. Introducing EZ-USB FX2 Page 1-11

EZ-USB FX2 Technical Reference Manual

The FIFOs can be controlled by an external master, which either supplies a clock and clock-
enable signals to operates synchronously, or strobe signals to operate asynchronously.

Alternately, the FIFOs can be controlled by an internal FX2 timing generator called the General
Programmable Interface (GPIF). The GPIF serves as an internal master, interfacing directly to the
FIFOs and generating user-programmed control signals for the interface to external logic. Addi-
tionally, the GPIF can be made to wait for external events by sampling external signals on its RDY
pins. The GPIF runs much faster than the FIFO data rate to give good programmable resolution
for the timing signals. It can be clocked from either the internal FX2 clock or an externally supplied
clock.

The FX2's CPU is rich in features. Up to five I/O ports are available, as well as two USARTS, three
counter/timers, and an extensive interrupt system. It runs at a clock rate of up to 48 MHz and uses
four clocks per instruction cycle instead of the twelve required by a standard 8051.

The FX2 chip family uses an enhanced SIE/USB interface which simplifies FX2 code by imple-
menting much of the USB protocol. In fact, the FX2 can function as a full USB device even without
firmware.

Like all EZ-USB family chips, FX2 operates at 3.3V. This simplifies the design of bus-powered
USB devices, since the 5V power available at the USB connector (which the USB Specification
allows to be as low as 4.4V) can drive a 3.3V regulator to deliver clean, isolated power to the FX2
chip.

\ ouT
D+ ‘ Serial | data Program &

D- Interface usB Data

USB Engine | N | Interface RAM
Connector (SIE) data 1/0 Ports
CPU |

(Enhanced Address Bus) .
UsB 8051) | Off-Chip
Transceiver Slave Ta@ Memory
FIFOs GPIE
EZ-USB FX2

A
©
“‘ \4
CTL RDY

Figure 1-8. FX2 128-pin Package Simplified Block Diagram

FX2 is available in a 128-pin package which brings out the 8051 address bus, data bus, and con-
trol signals to allow connection of external memory and/or memory-mapped I/O. Figure 1-8 is a
block diagram for this package; Chapter 5, "Memory", gives full details of the external-memory
interface.

Page 1-12 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

1.13 FX2 Feature Summary

FX2 includes the following features:

e On-chip 480 Mbits/sec transceiver, PLL and SIE—the entire USB 2.0 physical layer (PHY).

* Double-, triple- and quad-buffered endpoint FIFOs accommodate the 480 MBits/sec USB
2.0 data rate.

e Built-in, enhanced 8051 running at up to 48 MHz.

- Fully featured: 256 bytes of register RAM, two USARTS, three timers, two data
pointers.

- Fast: four clocks (83.3 nanoseconds at 48 MHz) per instruction cycle.

- SFR access to control registers (including I/O ports) that require high speed.
- USB-vectored interrupts for low ISR latency.

- Used for USB housekeeping and control, not to move high speed data.

* “Soft” operation—USB firmware can be downloaded over USB, eliminating the need for
hard-coded memory.

* Four interface FIFOs that can be internally or externally clocked. The endpoint and inter-
face FIFOs are unified to eliminate data transfer time between USB and external logic.

» General Programmable Interface (GPIF), a microcoded state machine which serves as a
timing master for ‘glueless’ interface to the FX2 FIFOs.

FX2 is a single-chip USB 2.0 peripheral solution. Unlike designs that use an external PHY, the FX2
integrates everything on one chip, eliminating costly high pin-count packages and the need to
route high-speed signals between chips.

1.14 FX2 Integrated Microprocessor

The FX2's CPU uses on-chip RAM as program and data memory. Chapter 5, "Memory", describes
the various internal/external memory options.

The CPU communicates with the SIE using a set of registers occupying on-chip RAM addresses
OXE600-OxE6FF. These registers are grouped and described by function in individual chapters of
this reference manual and summarized in register order in Chapter 15, "Registers".

The CPU has two duties. First, it participates in the protocol defined in the Universal Serial Bus
Specification Version 2.0, “Chapter 9, USB Device Framework.” Thanks to the FX2's “smart” SIE,

Chapter 1. Introducing EZ-USB FX2 Page 1-13

EZ-USB FX2 Technical Reference Manual

the firmware associated with the USB protocol is simplified, leaving code space and bandwidth
available for the CPU'’s primary duty—to help implement your device. On the device side, abun-
dant input/output resources are available, including I/O ports, USARTSs, and an 12C-compatible
bus master controller. These resources are described in Chapter 13, "Input/Output”, and Chapter
14, "Timers/Counters and Serial Interface".

It's important to recognize that the FX2 architecture is such that the CPU sets up and controls data
transfers, but it normally does not participate in high bandwidth transfers. It is not in the data path;
instead, the large data FIFOs that handle endpoint data connect directly to outside interfaces.To
make the interface versatile, a programmable timing generator (GPIF, General Programmable
Interface) can create user-programmed waveforms for high bandwidth transfers between the inter-
nal FIFOs and external logic.

FX2 adds eight interrupt sources to the standard 8051 interrupt system:

e INTZ2: USB Interrupt

e INT3: 12C-Compatible Bus Interrupt
e INT4: FIFO/GPIF Interrupt

e INT4: External Interrupt 4

e INT5: External Interrupt 5

e INT6: External Interrupt 6

e USART1: USART1 Interrupt

« WAKEUP: USB Resume Interrupt

The FX2 provides 27 individual USB-interrupt sources which share the INT2 interrupt, and 14 indi-
vidual FIFO/GPIF-interrupt sources which share the INT4 interrupt. To save the code and process-
ing time which normally would be required to identify an individual interrupt source, the FX2
provides a second level of interrupt vectoring called Autovectoring. Each INT2 and INT4 interrupt
source has its own autovector, so when an interrupt requires service, the proper ISR (interrupt ser-
vice routine) is automatically invoked. Chapter 4, "Interrupts" describes the FX2 interrupt system.

Page 1-14 EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

1.15 FX2 Block Diagram

D+ D-
. .
g s
= 8
=) ©
©
USB < o
2.0
PHY PHY O la—2—»
| ——————P|
Interface | |
24 MH g 2™
crystalZ PLL]
[
e
T
o
€ |[—2—
3
[S]
8051 i
48 MHz]
<
£ |[4—8—p
4 KB L=
Endpoint @ —
w
RAM < la—s—
USB regs aQ
0.5K Data —
RAM o
C |— 1 —p
8 KB port B port D 2
Pgm/Data A
RAM
Ext L i FIFOS | GPIF [4—14—»
Clock T .,
v
16 7
4
©
i
A J

General Purpose Interface
(e.qg. ATA, EPP, etc.)

Figure 1-9. FX2 Block Diagram

Chapter 1. Introducing EZ-USB FX2 Page 1-15

EZ-USB FX2 Technical Reference Manual

1.16 Packages

FX2 is available in three packages:

=0 = = = = =
= BT = = = = =
E SSOP E = 100 = = 128 =
= = = TQFP = = TQFP =
= 8x18x2.3 = = =
= mm = = 14x20x1.4 = = 14x20x1.4 =
= = = mm = = mm =

UTTTTUnrUurrrrneT [

Figure 1-10. 56-pin, 100-pin, and 128-pin FX2 Packages

1.16.1 56-Pin Package

Twenty-four general-purpose I/O pins (ports A, B, and D) are available. Sixteen of these /O pins
can be configured as the 16-bit data interface to the FX2's internal high-speed 16-bit FIFOs, which
can be used to implement low cost, high-performance interfaces such as ATAPI, UTOPIA, EPP,
etc. The 56-pin package has the following:

e Three 8-bit I/O ports: PORTA, PORTB, and PORTD
e |2C-compatible bus

e An 8- or 16-bit General Programmable Interface (GPIF) multiplexed onto PORTB and
PORTD, with five non-multiplexed control signals

* Four 8- or 16-bit Slave FIFOs, with five non-multiplexed control signals and four or five
control signals multiplexed with PORTA

Page 1-16 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

1.16.2 100-Pin Package

The 100-pin package adds functionality to the 56-pin package:
* Two additional 8-bit I/0 ports: PORTC and PORTE
e Seven additional GPIF Control (CTL) and Ready (RDY) signals
* Nine non-multiplexed peripheral signals (two USARTS, three timer inputs, INT4, and m)
« Eight additional control signals multiplexed onto PORTE
* Nine GPIF address lines, multiplexed onto PORTC (eight) and PORTE (one)

« RDand WR signals which may be used as read and write strobes for PORTC

1.16.3 128-Pin Package

The 128-pin package adds the 8051 address and data buses and control signals. The RD, PSEN,
and WR strobes are standard 8051 control strobes, serving as read/write strobes for external
memory attached to the 8051 address and data buses. The FX2 encodes the CS and OE signals
to automatically exclude external access to memory spaces which exist on-chip, and optionally to
combine off-chip data- and code-memory read accesses. The 128-pin package adds the following:

e 16-bit 8051 address bus
e 8-bit 8051 data bus

e Address/data bus control signals

1.16.4 Signals Available in the Three Packages

Three interface modes are available: Ports, GPIF Master, and Slave FIFO.

Figure 1-11 shows a logical diagram of the signals available in the three packages. The signals on
the left edge of the diagram are common to all interface modes, while the signals on the right are
specific to each mode. The interface mode is software-selectable via an internal mode register.

In “Ports” mode, all the 1/O pins are general-purpose I/O ports.

“GPIF master” mode uses the PORTB and PORTD pins as a 16-bit data interface to the four FX2
endpoint FIFOs EP2, EP4, EP6 and EPS8. In this “master” mode, the FX2 FIFOs are controlled by
the internal GPIF, a programmable waveform generator that responds to FIFO status flags, drives
timing signals using its CTL outputs, and waits for external conditions to be true on its RDY inputs.
Note that only a subset of the GPIF signals (CTLO-2, RDYO0-1) is available in the 56-pin package,
while the full set (CTLO-5, RDYO0-5) is available in the 100- and 128-pin packages.

Chapter 1. Introducing EZ-USB FX2 Page 1-17

EZ-USB FX2 Technical Reference Manual

In the “Slave FIFO” mode, external logic or an external processor interfaces directly to the FX2
endpoint FIFOs. In this mode, the GPIF is not active, since external logic has direct FIFO control.
Therefore, the basic FIFO signals (flags, selectors, strobes) are brought out on FX2 pins. The
external master can be asynchronous or synchronous, and it may supply its own independent
clock to the FX2 interface.

The 100-pin package includes all the functionality of the 56-pin package, and brings out the two
additional I/O ports PORTC and PORTE as well as all the USART, Timer, Interrupt, and GPIF sig-
nals. The RD and WR pins function as PORTC strobes in the 100-pin package, and as expansion
memory strobes in the 128-pin package.

The 128-pin package adds 28 pins to the 100-pin package to bring out the full 8051 expansion
memory bus. This allows for the connection of external memory for applications that run at power-
on and before connection to USB. The 128-pin package also provides the foundation for the
Cypress FX2 Development Kit boards, in which code is developed using a debug monitor that
runs in external RAM.

Page 1-18 EZ-USB FX2 Technical Reference Manual v2.1

Ports GPIF Master Slave FIFO
PD7| - FD[15] - FD[15]
PD6 | — FD[14] -~ FD[14]
PD5| . FD[13] ~ FD[13]
PD4 | -~ FD[12] - FD[12]
PD3| - FD[11] - FD[11]
PD2| - FD[10] -~ FD[10]
XTALIN PD1| - FD[9] -~ FD[9]
XTALOUT PDO | - FD[8] -~ FD[8]
PB7 | - FD[7] - FD[7]
PB6 | - FD[6] -~ FD[6]
DPLUS PB5| - FD[5] - FD[5]
DMINUS PB4 | - FD[4] - FD[4]
PB3| - FD[3] ~ FD[3]
PB2 | - FD[2] -~ FD[2]
scL PBl| - FD[1] ~ FD[1]
SDA 56 PBO | - FD[O] -~ FD[0]
— RDYO — SLRD
RESET# — RDY1 — SLWR
WAKEUP
_ CTLO — FLAGA
~cTu _ FLAGB
IFCLK _CTL2 ~ FLAGC
CLKOUT INTO#/PAO | INTO#/PAO INTO#/PAO
INT1#/PAL | INT1#/PAL INT1#/PAL
PA2 | PA2 — SLOE
WU2/PA3 | WU2/PA3 WU2/PA3
PA4 | PA4 — FIFOADRO
PA5 | PAS — FIFOADR1
PAG | PAG — PKTEND
PA7 | PA7 PA7IFLAGD/SLCS#
— RDY2
BRKPNT — RDY3
PC7/GPIFADR7 - Sgi‘s‘
PC6/GPIFADRG T ans
PC5/GPIFADR5 Cria
PC4/GPIFADR4 T e
PC3/GPIFADR3 -
PC2/GPIFADR2
pCUGPIFADRL 100 paedn
PCO/GPIFADRO ey >
PE7/GPIFADRS TXD1 ——>
PE6/T2EX INT4 |[€——
PES/INT6 INTS# |[€———
PE4/RxD10UT T2 l——
PE3/RxDOOUT TL l——
PE2/T20UT 0 €«—
PEL/TIOUT ===
PEO/TOOUT | RD#——>
| WR# ——>
Al5 I cstt—p
| Al4 I OE#—»
A13 | psEngt —>
Al2 _
ALl
A10 D7 —>
A9 D6 l«—>
A8 D5 l—>
A7 128 D4 |«— >
| A6 D3 [¢—>
A5 D2 le—>
A4 D1 l—>
A3 DO l—>
A2
Al EA l———
A0

Figure 1-11. Signals for the Three FX2 Package Types

Chapter 1. Introducing EZ-USB FX2

=

SYPRE

Page 1-19

EZ-USB FX2 Technical Reference Manual

1.17 Package Diagrams

I EE el e EE L2 A lellclle

> >» »>» ®® U U U U >» >» >» P> O U U U U U U T T L 2 T TV T

SRR iRt R R RIRRREGEEE L

S J U0 %§§§§Sds 549

555K n%e888g2°¢8 £ B °
[T} cLkout P e g = A pDo/FD8 | 102
2 {vcc B = 4 *wAKEUP [101]
[3 fonD vee 1007
[4_} roYO*SLRD RESET 99]
[5_J RDY1/SLWR CTL5J 98]
[_jRDY2 A7]
7 _JRrDY3 A2 96]
[8 _JRrDY4 A1f 95]
9 JrDYS Ao 94]
[10 _j Avce GNDJ 93]
(12 _J XTALOUT PA7/FLAGD/SLCS |92]
(12 || XTALIN PAGMPKTEND |91]
(13§ AGND PAS/FIFOADR1 |90]
[T&NC PA4/FIFOADRO | 89 |
[I5 JNC D788]
[16 I NC D6 87 |
7§ vce D5 86 |
[18 § bpLuUS CY7C68013 PA3*WU2 85]
[19 | bMINUS 128-pin TQFP PA2/SLOE | 84]
[20 § GND PALINTL] 83]
[21 fA11 PAO/INTOR 82]
[22 § A12 veel a1]
23} A13 GND 80]
22} A14 PC7/GPIFADR7 |79
[25 R a1s PC6/GPIFADRG 78 |
[26_jvcc PC5/GPIFADR5 |77]
[27_J GND PC4/GPIFADR4_76]
[28 fINT4 PC3/GPIFADR3 75]
[29 § 0 PC2/GPIFADR2 |74]
(30 fT1 PC1/GPIFADRL 73]
I Ry PCO/GPIFADROJ 72 |
[32_f IFcLk cTL2rFLAGC 71]
(33 | RESERVED cTL1FLAGB |70]
(32 | BkPT CTLOMFLAGA |69]
(35 Jen vee[68]
[36 | scL CcTL4f 67]
37 1 spa g@%g Egg@ cTL3f 66 |
3 o | S55F%<ox27255%30 < onof 6]

3||8| 9238388882228 3%838%5%838 8

EIEIEIE LIS

6e | Nasd
(v fum

(04

Page 1-20

O 0 9 9
= N W s
@ [©f D] |F] |N] | W)

Figure 1-12. CY7C68013-128 TQFP Pin Assignment

\E‘

[Cev B oon

v

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

IR EEERIEEEEREEREEREE

PR EFEEEE

AGIQALETIDIRRXNEOO0GQRE

O"FAIT ©0Jd=ZIIJIT T T T

S 9998 IR355868 229

NN ;xc”._\occc ~ O
5 oo4a44
1]vcc 3 G S PDO/FD8 | &0]
2 |GND ®© *WAKEUP |75]
3 | RDYO/*SLRD vce =]
2 | RDY1/*SLWR RESET |71
5 JRDY2 CTL5 [75
s JRDY3 GND |75]
7 |RDY4 PA7MFLAGD/SLCS | 72]
s RDY5 PAG/*PKTEND | 73]
s JAVCC PAS/FIFOADRL [72]
[10 | XTALOUT PA4/FIFOADRO [71]
11 | XTALIN PA3/WU2 70
12 J AGND PA2/*SLOE |69
3 INC PAL/INT1 [Tes |
[NC PAO/INTO |57
[sNC CY7C68013 VCC [o6]
[fvCC 100-pin TQFP GND [&5
17 | DPLUS PC7/GPIFADR7 | &4]
[| DMINUS PC6/GPIFADR6 | &3]
s J GND PC5/GPIFADR5 [62]
20 fvcc PC4/GPIFADR4 [&1]
21 JGND PC3/GPIFADR3 [&0]
22 | INT4 PC2/GPIFADR2 | 59 |
2|10 PC1/GPIFADR1 | s8]
Ca 11 PCO/GPIFADRO | 57]
Cs T2 CTL2/*FLAGC |56]
[z | IFCLK CTL1/*FLAGB | 55]
27 | RESERVED CTLOMFLAGA |57]
[28 | BKPT vce 7
[z] scL CcTL4 523
[30 | SDA cTL3 51
T UV UV TV T UV UV TV
SERS® _ 4p paddd

258 000082568508 0823¢

U;UOOHNOOOUOOH OO0

1 1 2) < 2]) e))))

Figure 1-13. CY7C68013-100 TQFP Pin Assignment

Chapter 1. Introducing EZ-USB FX2

Page 1-21

EZ-USB FX2 Technical Reference Manual

SCL CY7C68013 GND
SDA B56-pin SSOP VCC

[1 | PD5/FD13 PD4/FD12 f 56]
(2 | PD6/FD14 PD3/FD11 f 55]
(3 | PD7/FD15 PD2/FD10 f 54]
(2§ GND PD1/FD9 | 53]
[5] CLKOUT PDO/FD8 [52]
6] vCC *WAKEUP [5T]
7] GND VCC | 50]
& | RDYO/*SLRD RESET 49|
[9 | RDY1/*SLWR GND [28]
(10} AVCC PA7/*FLAGD/SLCS |47
(11 | XTALOUT PAG/PKTEND |26]
(12§ XTALIN PA5/FIFOADR1 45]
(13] AGND PA4/FIFOADRO 44]
@] VvCC PA3*WU2 [%]
15| DPLUS PA2/*SLOE |42
[16 | DMINUS PAL/INT1 1]
7] GND PAO/INTO 40]
(18] vCC VCC | 39]
[19] GND CTL2*FLAGC | 3]
[20] IFCLK CTL1/*FLAGB 37]
[21 | RESERVED CTLO/*FLAGA |36]
[22] 35]
[23] 34]
[24] vCcC GND [-33]
(25 | PBO/FDO PB7/FD7 321
26| PB1/FD1 PB6/FD6 | 3T]
27| PB2/FD2 PB5/FD5 | 30|
[28] 29]

PB3/FD3 PB4/FD4

Figure 1-14. CY7C68013-56 SSOP Pin Assignment

Page 1-22 EZ-USB FX2 Technical Reference Manual v2.1

%E.‘ﬁ'!-'!ﬁ'l-’.’iﬁ

1.18 FX2 Endpoint Buffers

The USB Specification defines an endpoint as a source or sink of data. Since USB is a serial bus,
a device endpoint is actually a FIFO which sequentially empties or fills with USB data bytes. The

host selects a device endpoint by sending a 4-bit address and a direction bit. Therefore, USB can
uniquely address 32 endpoints, INO through IN15 and OUTO through OUT15.

From the FX2's point of view, an endpoint is a buffer full of bytes received or held for transmission
over the bus. The FX2 reads host data from an OUT endpoint buffer, and writes data for transmis-
sion to the host to an IN endpoint buffer.

FX2 contains three 64-byte endpoint buffers, plus 4 Kilobytes of buffer space that can be config-
ured various ways, as indicated by Figure 1-15. The three 64-byte buffers are common to all con-
figurations.

EPOINGOUT[B8] &] &] &] &] B
EPTIN BT] || B] B B B
EP1OUT[B4 _] &] &] =] B] [EF]
512 512 512
EP2 1024 1024 1024
512 512 EFZ|| =12
EF2 EFZ
512 512 512
EF4 1024 EP2|| 1024 1024
512 | 512 ‘ -
512 512 EFE -512
EPG 1024 1024 1024
512 512 512
EPG EFPG
-512 512 512 512
EPS 1024 EPR | ‘ EP2 | | 1024
512 512 | 512 ‘ | 512 |

Figure 1-15. FX2 Endpoint Buffers

The three 64-byte buffers are designated EPO, EP1IN and EP10OUT. EPO is the default CONTROL
endpoint, a bidirectional endpoint that uses a single 64-byte buffer for both IN and OUT data. FX2
firmware reads or fills the EPO buffer when the (optional) data stage of a CONTROL transfer is
required.

Chapter 1. Introducing EZ-USB FX2 Page 1-23

EZ-USB FX2 Technical Reference Manual

#
The eight SETUP bytes in a CONTROL transfer do not appear in the 64-byte EPO endpoint buffer.
Instead, to simplify programming, the FX2 automatically stores the eight SETUP bytes in a sepa-

rate buffer (SETUPDAT, at OXE6B8-OXE6BF).

EP1IN and EP10UT use separate 64 byte buffers. FX2 firmware can configure these endpoints as
BULK, INTERRUPT or ISOCHRONOUS. These endpoints, as well as EPO, are accessible only by
FX2 firmware. This is in contrast to the large endpoint buffers EP2, EP4, EP6 and EP8, which are
designed to move high bandwidth data directly on and off chip without firmware intervention.

Endpoints 2, 4, 6 and 8 are the large, high bandwidth, data moving endpoints. They can be config-
ured various ways to suit bandwidth requirements. The shaded boxes in Figure 1-15 enclose the
buffers to indicate double, triple, or quad buffering. Double buffering means that one packet of
data can be filling or emptying with USB data while another packet (from the same endpoint) is
being serviced by external interface logic. Triple buffering adds a third packet buffer to the pool,
which can be used by either side (USB or interface) as needed. Quad buffering adds a fourth
packet buffer. Multiple buffering can significantly improve USB bandwidth performance when the
data supplying and consuming rates are similar, but bursty; it smooths out the bursts, reducing or
eliminating the need for one side to wait for the other.

Endpoints 2, 4, 6 and 8 can be configured using the choices shown in Tab le1-2.

Table 1-2. Endpoint 2, 4, 6, and 8 Configuration Choices

Characteristic Choices
Direction IN, OUT

Type Bulk, Interrupt, Isochronous
Buffering Double, Triple, Quad

When the FX2 operates at full speed (12 Mbits/sec), some or all of the endpoint buffer bytes
shown in Figure 1-15 may be employed, depending on endpoint type. Regardless of the physical
buffer size, the endpoint buffer accommodates only one full-speed packet.

For example, if EP2 is used as a full-speed BULK endpoint, the maximum number of bytes (max-
PacketSize) it can accommodate is 64, even though the physical buffer size is 512 or 1024 bytes
(it makes sense, therefore, to configure full-speed BULK endpoints as 512 bytes rather than 1024,
so that fewer unused bytes are wasted). An ISOCHRONOUS full speed endpoint, on the other
hand, could fully use either a 512- or 1024-byte buffer.

Page 1-24 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

1.19 External FIFO Interface

The large data FIFOs (endpoints 2, 4, 6 and 8) in the FX2 are designed to move high speed (480
Mbits/sec) USB data on and off chip without introducing any bandwidth bottlenecks. They accom-
plish this goal by implementing the following features:

1. Direct interface with outside logic, with the FX2's CPU out of the data path.

2. “"Quantum FIFQO” architecture instantaneously moves (“commits”) packets between the USB
and the FIFOs.

3. Versatile interfaces: Slave FIFO (external master) or GPIF (internal master), synchronous or
asynchronous clocking, internal or external clocks, etc.

The firmware sets switches to configure the outside FIFO interface, and then generally does not
participate in moving the data into and out of the FIFOs.

To understand the “Quantum FIFO”, it is necessary to refer to two data domains, the USB domain
and the Interface domain. Each domain is independent, allowing different clocks and logic to han-
dle its data.

The USB domain is serviced by the SIE, which receives and delivers FIFO data packets over the
two-wire USB bus. The USB domain is clocked using a reference derived from the 24 MHz crystal
attached to the FX2 chip.

The Interface domain loads and unloads the endpoint FIFOs. An external device such as a DSP or
ASIC can supply its own clock to the FIFO interface, or the FX2’s internal interface clock (IFCLK)
can be supplied to the interface.

The classic solution to the problem of reconciling two different and independent clocks is to use a
FIFO. The FX2’'s FIFOs have an unusual property: They're Quantum FIFOs, which means that
data is committed to the FIFOs in USB-size packets, rather than one byte at a time. This is invisible
to the outside interface, since it services the FIFOs just like any ordinary FIFO (i.e., by checking full
and empty flags). The only minor difference is that when an empty flag goes from 1 (empty) to 0
(not empty), the number of bytes in the FIFO jumps to a USB packet size, rather than just one
byte.

FX2 Quantum FIFOs may be moved between data domains almost instantaneously. The Quantum
nature of the FIFOs also simplifies error recovery. If endpoint data were continuously clocked into
an interface FIFO, some of the packet data might have already been clocked out by the time an
error is detected at the end of a USB packet. By switching FIFO data between the domains in
USB-packet-size blocks, each USB packet can be error-checked (and retried, if necessary) before
it's committed to the other domain.

Figures 1-16 and 1-17 illustrate the two methods by which external logic interfaces to the endpoint
FIFOs EP2, EP4, EP6 and EPS.

Chapter 1. Introducing EZ-USB FX2 Page 1-25

EZ-USB FX2 Technical Reference Manual

EPS
EP6
EP4
EP2

FD[15:0]) Data
<¢— PKTEND
—» (INFULL) SLRD
SLWR \ 7‘
—®» (OUTEMPTY) PKTEND
FIFO > (PRGFLAG) Asynchronous
<—p |[FCLK
<¢— SLRD
— IFCLK f:
<— SLWR
select l¢— SLOE SLRD
4 4 SLWR \ /
PKTEND
FIFOADR1 Synchronous
FIFOADRO

Figure 1-16. FX2 FIFOs in “Slave FIFO” Mode

Figure 1-16 illustrates the outside-world view of the FX2 data FIFOs configured as “Slave FIFOs”.
The outside logic supplies a clock, responds to the FIFO flags, and clocks FIFO data in and out
using the strobe signals. Optionally, the outside logic may use the internal FX2 Interface Clock
(IFCLK) as its reference clock.

Three FIFO flags are shown in parentheses in Figurel-16 because they actually are called
FLAGA-FLAGD in the pin diagram (there are four flag pins). Using configuration bits, various FIFO
flags can be assigned to these general-purpose flag pins. The names shown in parentheses illus-
trate typical uses for these configurable flags. The Programmable Level Flag (PRGFLAG) can be
set to any value to indicate degrees of FIFO “fullness”. The outside interface selects one of the
four FIFOs using the FIFOADR pins, and then clocks the 16-bit FIFO data using the SLRD (Slave
Read) and SLWR (Slave Write) signals. PKTEND is used to dispatch a non-full IN packet to USB.

Page 1-26 EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

EPS
EP6
EP4 |

EP2 /]
FD[15:0] Data

F“:O — | FLAGS
<4—| SLRD
¢— SLWR
4— SLOE
l<¢—| SLRD
select #» CTL
) «—%—— RDY

GP”: ﬁg;»GPIFADR

8051 RDY -1
8051 INT -

» IFCLK
S0 Mz ‘ IFCLK
48 MHz

Figure 1-17. FX2 FIFOs in “GPIF Master” Mode

External systems that connect to the FX2 FIFOs must provide control circuitry to select FIFOs,
check flags, clock data, etc. FX2 contains a sophisticated control unit (the General Programmable
Interface, or GPIF) which can replace this external logic. In the “GPIF Master” FIFO mode,
(Figure 1-17), the GPIF reads the FIFO flags, controls the FIFO strobes, and presents a user-cus-
tomizable interface to the outside world. The GPIF runs at a very high speed (up to 48 MHz clock
rate) so that it can develop high-resolution control waveforms. It can be clocked from one of two
internal sources (30 or 48 MHz) or from an external clock.

Control (CTL) signals are programmable waveform outputs, and ready (RDY) signals are input
pins that can be tested for conditions that cause the GPIF to pause and resume operation, imple-

Chapter 1. Introducing EZ-USB FX2 Page 1-27

EZ-USB FX2 Technical Reference Manual

menting “wait states”. GPIFADR pins present a 9-bit address to the interface that may be incre-
mented as data is transferred. The 8051 INT signal is a ‘hook’ that can signal the FX2’'s CPU in the
middle of a transaction; GPIF operation resumes once the CPU asserts its own 8051 RDY signal.
This *hook’ permits great flexibility in the generation of GPIF waveforms.

1.20 EZ-USB FX2 Product Family

The EZ-USB FX2 family is available in various pinouts to serve different system requirements and

1/0 | Bus Width Data/Address Bus

costs.
Table 1-3. EZ-USB FX2 Family
Part Number Package Ram .
Support

CY7C68013-56PVC |56-pin SSOP | 8 KBytes Yes
CY7C68013-100AC |100-pin TQFP @ 8 KBytes Yes
CY7C68013-128AC |128-pin TQFP @ 8 KBytes Yes

Page 1-28

24 | 8/16 Bits No
40 | 8/16 Bits No
40 | 8/16 Bits | 8051 Address/Data Bus

EZ-USB FX2 Technical Reference Manual v2.1

Chapter 2 Endpoint Zero

2.1 Introduction

Endpoint zero has special significance in a USB system. It is a CONTROL endpoint, and it is
required by every USB device. The USB host uses special SETUP tokens to signal transfers that
deal with device control; only CONTROL endpoints accept these special tokens.

The USB host sends a suite of standard device requests over endpoint zero. These standard
requests are fully defined in Chapter 9 of the USB Specification. This chapter describes how the
FX2 chip handles endpoint zero requests.

The FX2 provides extensive hardware support for handling endpoint-zero operations; this chapter
describes those operations and the FX2 resources that simplify the firmware which handles them.

Endpoint zero is the only CONTROL endpoint supported by the FX2. CONTROL endpoints are
bi-directional, so the FX2 provides a single 64-byte buffer, EPOBUF, which firmware handles
exactly like a bulk endpoint buffer for the data stages of a CONTROL transfer. A second 8-byte
buffer called SETUPDAT, which is unique to endpoint zero, holds data that arrives in the SETUP
stage of a CONTROL transfer. This relieves the FX2 firmware of the burden of tracking the three
CONTROL transfer phases (SETUP, DATA, and STATUS). The FX2 also generates separate inter-
rupt requests for the various transfer phases, further simplifying code.

Endpoint zero is always enabled and accessible by the USB host.

Chapter 2. Endpoint Zero Page 2-1

EZ-USB FX2 Technical Reference Manual

2.2 Control Endpoint EPO

«+«—SETUP Stage —»

S D C
E g ﬁ CR: Al||l 8bytes || R A
T bl pll ¢ T| Setup ||C ©
U rRlpl s A Data 1 K
P 0 6
Token Packe Data Packet /S Pk
L SUTOK Interrupt T—SUDAV Interrupt
FX2 sets HSNAK=1

< DATA Stage >

EEIE °ll [AEE(E el .
I ||D|| N||R T Payload c fo I || D||N|| R T Payload C c
N|| D|| D|| C Data N| D|| D|| C Data

Rl Pl s A 1 K Rl Pl 5 A 1 K

1 6 0 6
Token Packe Data Packet /S P Token Packe Data Packet /S Pk
L EPO-IN Interrupt EPO-IN Interrupt J
< STATUS Stage >
D|| C D|| C

ol Al ElClll Al RSN ol AlEICI| alrl|| A

D|| N|| R Y D|| N|| R
U T||C A U T|| C C
T PIBIC Al 1] Nk 7| 2 2l Sl || Al 1 K

R|| P|| 5 1|5 C R|| P|| 5 15
Token Packet) \Data P! /S Pk I Token Packe ata Pkt \H/S P

8051 clears HSNAK bit (writes 1 to it)

or sets the STALL bit.

Figure 2-1. A USB Control Transfer (With Data Stage)

Endpoint zero accepts a special SETUP packet, which contains an 8-byte data structure that pro-
vides host information about the CONTROL transaction. CONTROL transfers include a final
STATUS phase, constructed from standard PIDs (IN/OUT, DATAL, and ACK/NAK).

Some CONTROL transactions include all required data in their 8-byte SETUP Data packet. Other
CONTROL transactions require more OUT data than will fit into the eight bytes, or require IN data
from the device. These transactions use standard bulk-like transfers to move the data. Note in
Figure 2-1 that the DATA Stage looks exactly like a bulk transfer. As with BULK endpoints, the
endpoint zero byte count registers must be loaded to ACK each data transfer stage of a
CONTROL transfer.

Page 2-2 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

The STATUS stage consists of an empty data packet with the opposite direction of the data stage,
or an IN if there was no data stage. This empty data packet gives the device a chance to ACK or
NAK the entire CONTROL transfer.

The HSNAK bit holds off the completion of a CONTROL transfer until the device has had time to
respond to a request. For example, if the host issues a Set_Interface Request, the FX2 firmware
performs various housekeeping chores such as adjusting internal modes and re-initializing end-
points. During this time, the host issues handshake (STATUS stage) packets to which the FX2
automatically responds with NAKSs, indicating “busy.” When the firmware completes its housekeep-
ing operations, it clears the HSNAK bit (by writing 1 to it), which instructs the FX2 to ACK the
STATUS stage, terminating the transfer. This handshake prevents the host from attempting to use
an interface before it's fully configured.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero transfer (the
SETUP stage can never stall), firmware must set both the STALL and HSNAK bits for endpoint
zero.

Some CONTROL transfers do not have a DATA stage. Therefore, the code that processes the
SETUP data should check the length field in the SETUP data (in the 8-byte buffer at SETUPDAT)
and arm endpoint zero for the DATA phase (by loading EPOBCH:L) only if the length field is non-
zero.

Two interrupts provide notification that a SETUP packet has arrived, as shown in Figur e2-2.

/\
8 bytes SETUPDAT
Setup 8 RAM

Data bytes

Y sutok * supav

Interrupt Interrupt

Figure 2-2. Two Interrupts Associated with EPO CONTROL Transfers

The FX2 asserts the SUTOK (Setup Token) interrupt request when it detects the SETUP token at
the beginning of a CONTROL transfer. This interrupt is normally used for debug only.

The FX2 asserts the SUDAV (Setup Data Available) interrupt request when the eight bytes of

SETUP data have been received error-free and transferred to the SETUPDAT buffer. The FX2
automatically takes care of any retries if it finds errors in the SETUP data. These two interrupt
request bits must be cleared by firmware.

Firmware responds to the SUDAV interrupt request by either directly inspecting the eight bytes at

SETUPDAT or by transferring them to a local buffer for further processing. Servicing the SETUP
data should be a high priority, since the USB Specification stipulates that CONTROL transfers

Chapter 2. Endpoint Zero Page 2-3

EZ-USB FX2 Technical Reference Manual

must always be accepted and never NAK'd. It is possible, therefore, that a CONTROL transfer
could arrive while the firmware is still servicing a previous one. In this case, the earlier CONTROL
transfer service should be aborted and the new one serviced. The SUTOK interrupt gives advance
warning that a new CONTROL transfer is about to overwrite the eight SETUPDAT bytes.

If the firmware stalls endpoint zero (by setting the STALL and HSNAK bits to 1), the FX2 automat-
ically clears the stall bit when the next SETUP token arrives.

Like all FX2 interrupt requests, the SUTOK and SUDAV bits can be directly tested and cleared by
the firmware (cleared by writing 1) even if their corresponding interrupts are disabled.

Figure 2-3 shows the FX2 registers that are associated with CONTROL transactions over EPO.

Registers Associated with Endpoint Zero
For handling SETUP transactions

Initialization Data transfer
SETUPDAT
ussie | [a] | [[r] [e] 8 Bytes of
SETUP Data
Interrupt Enable:
A=EPO ACK
T=Setup Token EPOBCH ‘15 ‘ 14 ‘ 13 ‘ 12 ‘11 ‘ 10 ‘ 9 ‘ 8 ‘

D=Setup Data

EPOBCL ‘7\6‘5‘4‘3‘2‘1‘0‘

Interrupt Control

USBIRQ ‘ ‘A‘ ‘ ‘ ‘T‘ ‘D‘ SUDPTRH‘15‘14‘13‘12‘11‘10‘9‘8‘

Interrupt Request: SUDPTRL ‘ 7 ‘ o ‘ 5 ‘ 4 ‘ 3 ‘) ‘ . ‘ o ‘

A=EP0 ACK
T=Setup Token suoptreTL [[| | [[[[4]

D=Setup Data

A=SDP Auto

Figure 2-3. Registers Associated with EPO Control Transfers

These registers augment those associated with normal bulk transfers over endpoint zero, which
are described in Chapter 8, "Access to Endpoint Buffers".

Two bits in the USBIE (USB Interrupt Enable) register enable the SETUPToken (SUTOK) and
SETUP Data Available interrupts. The actual interrupt-request bits are in the USBIRQ (USB Inter-
rupt Requests) register.

The FX2 transfers the eight SETUP bytes into eight bytes of RAM at SETUPDAT. A 16-bit pointer,

SUDPTRH:L, provides hardware assistance for handling CONTROL IN transfers, in particular the
Get Descriptor requests described later in this chapter.

Page 2-4 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

2.3 USB Requests

The Universal Serial Bus Specification Version 2.0, Chapter 9, "USB Device Framework" defines a
set of Standard Device Requests. When the firmware is in control of endpoint zero (RENUM=1),
the FX2 handles only one of these requests (Set Address) automatically; it relies on the firmware
to support all of the others. The firmware acts on device requests by decoding the eight bytes con-
tained in the SETUP packet and available at SETUPDAT. Table2-1 defines these eight bytes.

Table 2-1. The Eight Bytes in a USB SETUP Packet

Byte Field Meaning
0 |bmRequestType Request Type, Direction, and Recipient.
1 | bRequest The actual request (see Tabl e2-2).
2 |wValueL 16-hit value, varies according to bRequest.
3 |wValueH
4 | windexL 16-hit field, varies according to bRequest.
5 |windexH
6 |wLengthL Number of bytes to transfer if there is a data phase.
7 |wLengthH

The Byte column in the previous table shows the byte offset from SETUPDAT. The Field column
shows the different bytes in the request, where the “bm” prefix means bit-map, “b” means byte [8
bits, 0-255], and “w” means word [16 bits, 0-65535].

Table 2-2 shows the different values defined for bRequest, and how the firmware should respond
to each request. The remainder of this chapter describes each of the requests inTabl e2-2 in
detail.

NG
Table 2-2 applies when RENUM=1, signifying that the firmware, rather than the FX2 hardware,
handles device requests

Chapter 2. Endpoint Zero Page 2-5

EZ-USB FX2 Technical Reference Manual

Table 2-2. How the Firmware Handles USB Device Requests (RENUM=1)

bRequest Name

0x00 Get Status

FX2 Action
SUDAV Interrupt

Firmware Response
Supply RemWU, SelfPwr or Stall Bits

0x01 Clear Feature SUDAV Interrupt Clear RemWU, SelfPwr or Stall Bits
0x02 (reserved) none Stall EPO

0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall Bits
0x04 (reserved) none Stall EPO

0x05 Set Address
0x06 Get Descriptor SUDAV Interrupt
0x07 Set Descriptor SUDAV Interrupt
0x08 Get Configuration | SUDAV Interrupt
0x09 Set Configuration | SUDAV Interrupt
O0x0A Get Interface SUDAV Interrupt
0x0B Set Interface SUDAV Interrupt
0x0C Sync Frame SUDAV Interrupt

Update FNADDR Register | none

Supply table data over EPO-IN
Application dependent

Send current configuration number
Change current configuration

Supply alternate setting No. from RAM
Change alternate setting No.

Supply a frame number over EPO-IN
Vendor Requests
0xAOQ (Firmware Load)
O0xA1 - OXAF

All except 0XA0

Upload / Download RAM ---
SUDAV Interrupt
SUDAV Interrupt

Reserved by Cypress Semiconductor
Depends on application

In the ReNumerated condition (RENUM=1), the FX2 passes all USB requests except Set Address
to the firmware via the SUDAV interrupt.

The FX2 implements one vendor-specific request: “Firmware Load,” 0XxAO (the bRequest value of
O0xAO is valid only if byte 0 of the request, bmRequestType, is also “x10xxxxx,” indicating a vendor-
specific request.) The load request is valid at all times, so the load feature may be used even after
ReNumeration. If your application implements vendor-specific USB requests, and you do not wish
to use the Firmware Load feature, be sure to refrain from using the bRequest value 0xAO for your
custom requests. The Firmware Load feature is fully described in Chapter 3, "Enumeration and
ReNumeration™",

To avoid future incompatibilities, vendor requests 0xAO-OxAF are reserved by Cypress Semicon-
ductor.

Page 2-6 EZ-USB FX2 Technical Reference Manual v2.1

2.3.1 Get Status

i&'n'::-l'-:r-:e_:s

The USB Specification defines three USB status requests. A fourth request, to an interface, is
declared in the spec as “reserved.” The four status requests are:

* Remote Wakeup (Device request)

» Self-Powered (Device request)

« Stall (Endpoint request)

* Interface request (reserved)

The FX2 automatically asserts the SUDAV interrupt to tell the firmware to decode the SETUP
packet and supply the appropriate status information.

8 bytes
Setup
Data

Bytes

8 RAM
bytes
SUDAV
Interrupt
64-byte
Buffer

SETUPDAT

INOBUF

INOBC

Figure 2-4. Data Flow for a Get_Status Request

Chapter 2. Endpoint Zero

Page 2-7

EZ-USB FX2 Technical Reference Manual

As Figure 2-4 illustrates, the firmware responds to the SUDAV interrupt by decoding the eight
bytes the FX2 has copied into RAM at SETUPDAT. The firmware answers a Get Status request
(bRequest=0) by loading two bytes into the EPOBUF buffer and loading the byte count register
EPOBCH:L with the value 0x0002. The FX2 then transmits these two bytes in response to an IN
token. Finally, the firmware clears the HSNAK bit (by writing 1 to it), which instructs the FX2 to
ACK the status stage of the transfer.

The following tables show the eight SETUP bytes for Get Status Requests.

Table 2-3. Get Status-Device (Remote Wakeup and Self-Powered Bits)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device
1 |bRequest 0x00 | “Get Status” Load two bytes into EPOBUF:
2 |wValueL 0x00
3 | wValueH 0x00 Byte 0 : bit 0 = Self-Powered
4 | windexL 0x00 : bit 1 = Remote Wakeup
5 | windexH 0x00 Byte 1 : zero
6 |wLengthL 0x02 | Two bytes requested
7 |wLengthH 0x00

Get Status-Device queries the state of two bits, “Remote Wakeup” and “Self-Powered”. The
Remote Wakeup bit indicates whether or not the device is currently enabled to request remote
wakeup (remote wakeup is explained in Chapter 6, "Power Management"). The Self-Powered bit
indicates whether or not the device is self-powered (as opposed to USB bus-powered).

The firmware returns these two bits by loading two bytes into EPOBUF, then loading a byte count
of 0x0002 into EPOBCH:L.

Table 2-4. Get Status-Endpoint (Stall Bits)

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x82 | IN, Endpoint Load two bytes into EPOBUF:
1 |bRequest 0x00 | “Get Status” Byte 0 : bit 0 = Stall Bit for EP(n)
2 |wValueL 0x00 Byte 1 : zero
3 |wValueH 0x00
4 |windexL EP 0x00-0x08: OUT0-OUT8
5 | windexH 0x00 | 0x80-0x88: INO-IN8
6 |wLengthL 0x02 | Two bytes requested
7 |wLengthH 0x00

Each endpoint has a STALL bit in its EPXCS register. If this bit is set, any request to the endpoint
returns a STALL handshake rather than ACK or NAK. The Get Status-Endpoint request returns
the STALL state for the endpoint indicated in byte 4 of the request. Note that bit 7 of the endpoint
number EP (byte 4) specifies direction (0 = OUT, 1 = IN).

Page 2-8 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Endpoint zero is a CONTROL endpoint, which by USB definition is bi-directional. Therefore, it has
only one stall bit.

About STALL

The USB STALL handshake indicates that something unexpected has happened. For
instance, if the host requests an invalid alternate setting or attempts to send data to a non-
existent endpoint, the device responds with a STALL handshake over endpoint zero instead
of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which does not employ
handshakes. Every FX2 bulk endpoint has its own stall bit. The firmware sets the stall condi-
tion for an endpoint by setting the STALL bit in the endpoint’'s EPXCS register. The host tells
the firmware to set or clear the stall condition for an endpoint using the Set Feature/Stall and
Clear Feature/Stall Requests.

The device might decide to set the stall condition on its own, too. In a routine that handles
endpoint zero device requests, for example, when an undefined or non-supported request is
decoded, the firmware should stall EPO.

Once the firmware stalls an endpoint, it should not remove the stall until the host issues a
Clear Feature/Stall Request. An exception to this rule is endpoint 0, which reports a stall con-
dition only for the current transaction and then automatically clears the stall condition. This
prevents endpoint 0, the default CONTROL endpoint, from locking out device requests.

Table 2-5. Get Status-Interface

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x81 | IN, Endpoint Load two bytes into EPOBUF:
1 |bRequest 0x00 |“Get Status” Byte 0 : zero
2 |wValueL 0x00 Byte 1: zero
3 |wValueH 0x00
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL 0x02 | Two bytes requested
7 |wLengthH 0x00

Get Status/Interface is easy: the firmware returns two zero bytes through EPOBUF and clears the
HSNAK bit (by writing 1 to it). The requested bytes are shown as “Reserved (reset to zero)” in the
USB Specification.

Chapter 2. Endpoint Zero Page 2-9

EZ-USB FX2 Technical Reference Manual

2.3.2 Set Feature

Set Feature is used to enable remote wakeup or stall an endpoint. No data stage is required.

Table 2-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Set the Remote Wakeup Bit
1 |bRequest 0x03 | “Set Feature”
2 | wValueL 0x01 | Feature Selector:
3 | wValueH 0x00 | Remote Wakeup
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL 0x00
7 | wLengthH 0x00

The only Set Feature/Device request presently defined in the USB Specification is to set the
remote wakeup bit. This is the same bit reported back to the host as a result of a Get Status-
Device request (Table 2-3). The host uses this bit to enable or disable remote wakeup by the
device.

Table 2-7. Set Feature-Endpoint (Stall)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x02 | OUT, Endpoint Set the STALL bit for the
1 |bRequest 0x03 | “Set Feature” indicated endpoint:.

2 | wValueL 0x00 | Feature Selector:

3 | wValueH 0x00 | STALL

4 |windexL EP 0x00-0x08: OUTO-OUTS8
5 |windexH 0x00 | 0x80-0x88: INO-IN8

6 |wLengthL 0x00

7 | wLengthH 0x00

The only Set Feature/Endpoint request presently defined in the USB Specification is to stall an
endpoint. The firmware should respond to this request by setting the STALL bit in the EPXCS reg-
ister for the indicated endpoint EP (byte 4 of the request). The firmware can either stall an end-
point on its own or in response to the device request. Endpoint stalls are cleared by the host Clear
Feature/Stall request.

The firmware should respond to the Set Feature/Stall request by performing the following tasks:

1. Setthe STALL bit in the indicated endpoint's EPXCS register.
2. Reset the data toggle for the indicated endpoint.

Page 2-10 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Restore the stalled endpoint to its default condition, ready to send or accept data after the stall

condition is removed by the host (via a Clear Feature/Stall request). For EP1 IN, for example,
firmware should clear the BUSY bit in the EP1CS register; for EP1OUT, firmware should load
any value into the EP1 byte-count register.

CONTROL transfer.

Clear the HSNAK bit in the EPOCS register (by writing 1 to it) to terminate the Set Feature/Stall

Step 3 is also required whenever the host sends a Set Interface request.

Data Toggles

The FX2 automatically maintains the endpoint toggle bits to ensure data integrity for USB
transfers. Firmware should directly manipulate these bits only for a very limited set of circum-

stances:

* Set Feature/Stall

» Set Configuration

e Set Interface

2.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

Table 2-8. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte Field
0 |bmRequestType

bRequest
wValueL
wValueH
windexL
windexH
wLengthL

N o o WN|E

wLengthH

Chapter 2. Endpoint Zero

Value
0x00
0x01
0x01
0x00
0x00
0x00
0x00
0x00

Meaning Firmware Response
OUT, Device Clear the remote wakeup bit.
“Clear Feature”
Feature Selector:
Remote Wakeup

Page 2-11

EZ-USB FX2 Technical Reference Manual

Table 2-9. Clear Feature-Endpoint (Clear Stall)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x02 | OUT, Endpoint Clear the STALL bit for the
1 |bRequest 0x01 | “Clear Feature” indicated endpoint.

2 | wValueL 0x00 | Feature Selector:

3 wValueH 0x00 | STALL

4 |windexL EP 0x00-0x08: OUT0-OUT8
5 | windexH 0x00 | Ox80-0x88: INO-IN8

6 |wLengthL 0x00

7 | wLengthH 0x00

If the USB device supports remote wakeup (reported in its descriptor table when the device enu-
merates), the Clear Feature/Remote Wakeup request disables the wakeup capability.

The Clear Feature/Stall removes the stall condition from an endpoint. The firmware should
respond by clearing the STALL bit in the indicated endpoint's EPXCS register.

2.3.4 Get Descriptor

During enumeration, the host queries a USB device to learn its capabilities and requirements
using Get Descriptor requests. Using tables of descriptors, the device sends back (over EPO-IN)
such information as what device driver to load, how many endpoints it has, its different configura-
tions, alternate settings it may use, and informative text strings about the device.

The FX2 provides a special Setup Data Pointer to simplify firmware service for Get_Descriptor

requests. The firmware loads this 16-bit pointer with the starting address of the requested descrip-
tor, clears the HSNAK bit (by writing 1 to it), and the FX2 transfers the entire descriptor.

Page 2-12 EZ-USB FX2 Technical Reference Manual v2.1

<«—SETUP Stage——»

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

S allellc D C
Solnf | |12 S2es | A SETUPDAT
u DIl Dy ¢ A De;'?ap 1 K 8 RAM
bytes
p RIIP||5 0 6 y
Token Packet Data Packet H/S Pkt
T;SUDAV Interrupt
< DATA Stage >
THRIE ol [RRE It T
D|IN|IR T Payload c C I [|D||N|| R T Payload c C
D(|D|IC Data N|| D||D|| C Data
rRIp| 5[4 L K rRi[P| 5[A L K
1 6 0 6
Token Packet Data Packet \ H/S Pkt Token Packet Data Pagket /S Pkt
EPOIN EPOIN
Interrupt Interrupt
D(|C
ol AILEI Il all A ™= 64 bytes
DI|NJ||R
U T||C ©
D||DJ| C
T rilpll s All1l K
1/16 27bytes/
Token Packet ata Pkt) \H/S Pkt

Figure 2-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests

Figure 2-5 illustrates use of the Setup Data Pointer. This pointer is implemented as two registers,
SUDPTRH and SUDPTRL. Most Get Descriptor requests involve transferring more data than fits
into one packet. In the Figure 2-5 example, the descriptor data consists of 91 bytes.

The CONTROL transaction starts in the usual way, with theFX2 automatically transferring the eight
bytes from the SETUP packet into RAM at SETUPDAT, then asserting the SUDAV interrupt
request. The firmware decodes the Get Descriptor request, and responds by clearing the HSNAK
bit (by writing 1 to it), and then loading the SUDPTRH:L registers with the address of the requested
descriptor. Loading the SUDPTRL register causes the FX2 to automatically respond to two IN
transfers with 64 bytes and 27 bytes of data using SUDPTR as a base address, and then to
respond to the STATUS stage with an ACK.

The usual endpoint-zero interrupts SUDAV and EPOIN remain active during this automated trans-
fer, so firmware will normally disables these interrupts because the transfer requires no firmware
intervention.

Three types of descriptors are defined: Device, Configuration, and String.

Chapter 2. Endpoint Zero Page 2-13

EZ-USB FX2 Technical Reference Manual

2.3.4.1 Get Descriptor-Device

Table 2-10. Get Descriptor-Device

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get Descriptor” Device Descriptor table in RAM.
2 |wValueL 0x00
3 | wValueH 0x01 | Descriptor Type: Device
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL LenL
7 |wLengthH LenH

As illustrated in Figure 2-5, the firmware loads the 2-byte SUDPTR with the starting address of the
Device Descriptor table. When SUDPTRL is loaded, the FX2 automatically performs the following
operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the SETUP packet
(LenL and LenH in Table 2-10).

2. Reads the requested descriptor’s length field to determine the actual descriptor length.

3. Sends the smaller of (a) the requested number of bytes or (b) the actual number of bytes in
the descriptor, over EPOBUF using the Setup Data Pointer as a data table index. This consti-
tutes the second phase of the three-phase CONTROL transfer. The FX2 packetizes the data
into multiple data transfers as necessary.

4. Automatically checks for errors and re-transmits data packets if necessary.

5. Responds to the third (handshake) phase of the CONTROL transfer to terminate the opera-
tion.

The Setup Data Pointer can be used for any Get Descriptor request (e.g., Get Descriptor-String).

It can also be used for vendor-specific requests. If bytes 6 and 7 of those requests contain the
number of bytes in the transfer (see Step 1, above), the Setup Data Pointer works automatically,
as it does for Get Descriptor requests; if bytes 6 and 7 don’t contain the length of the transfer, the
length can be loaded explicitly (see the SDPAUTO paragraphs of Section 8.7, "The Setup Data
Pointer").

It is possible for the firmware to do manual CONTROL transfers by directly loading the EPOBUF
buffer with the various packets and keeping track of which SETUP phase is in effect. This is a
good USB training exercise, but not necessary due to the hardware support built into the FX2 for
CONTROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the EPOBUF buffer and
then loading the EPOBCH:L registers with the byte count would be equivalent to loading the Setup

Page 2-14 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Data Pointer. However, this would waste bandwidth because it requires byte transfers into the
EPOBUF Buffer; using the Setup Data Pointer doesn't.

2.3.4.2 Get Descriptor-Device Qualifier

Table 2-11. Get Descriptor-Device Qualifier

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” the appropriate Device Qualifier
2 | wValueL 0x00 Descriptor table in RAM.
3 | wValueH 0x06 | Descriptor Type: Device Quali-
fier
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL LenL
7 | wLengthH LenH

The Device Qualifier descriptor is used only by devices capable of high-speed (480 Mbps) opera-
tion; it describes information about the device that would change if the device were operating at
the other speed (i.e., if the device is currently operating at high speed, the device qualifier returns
information about how it would operate at full speed and vice-versa).

Device Qualifier descriptors are handled just like Device descriptors; the firmware loads the appro-
priate descriptor address into SUDPTRH:L, then the FX2 does the rest.

2.3.4.3 Get Descriptor-Configuration

Table 2-12. Get Descriptor-Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” Configuration Descriptor table in
2 | wValueL CFG | Configuration Number RAM
3 | wValueH 0x02 | Descriptor Type: Configuration
4 | windexL 0x00
5 |windexH 0x00
6 |wLengthL LenL
7 | wLengthH LenH

Chapter 2. Endpoint Zero Page 2-15

EZ-USB FX2 Technical Reference Manual

2.3.4.4 Get Descriptor-String

Table 2-13. Get Descriptor-String

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” String Descriptor table in
2 |wValueL STR | String Number RAM.

3 | wValueH 0x03 | Descriptor Type: String
4 | windexL 0x00 |(Language ID L)

5 | windexH 0x00 | (Language ID H)

6 |wLengthL LenL

7 |wLengthH LenH

Configuration and String descriptors are handled similarly to Device descriptors. The firmware
reads byte 2 of the SETUP data to determine which configuration or string is being requested,
then loads the corresponding descriptor address into SUDPTRH:L. The FX2 does the rest.

2.3.4.5 Get Descriptor-Other Speed Configuration

Table 2-14. Get Descriptor-Other Speed Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Set SUDPTR H:L to start of
1 |bRequest 0x06 | “Get_Descriptor” Other Speed Configuration
2 |wValueL CFG | Other Speed Descriptor table in RAM.

Configuration Number
3 | wValueH 0x07 | Descriptor Type: Other
Speed Configuration
4 | windexL 0x00 |(Language ID L)
5 | windexH 0x00 | (Language ID H)
6 |wLengthL LenL
7 |wLengthH LenH

The Other Speed Configuration descriptor is used only by devices capable of high-speed (480
Mbps) operation; it describes the configuration(s) of the device if it were operating at the other
speed (i.e., if the device is currently operating at high speed, the Other Speed Configuration
returns information about full-speed configuration and vice-versa).

Other Speed Configuration descriptors are handled just like Configuration descriptors; the firm-
ware loads the appropriate descriptor address into SUDPTRH:L, then the FX2 does the rest.

Page 2-16 EZ-USB FX2 Technical Reference Manual v2.1

;HI ESS

2.3.5 Set Descriptor

Table 2-15. Set Descriptor-Device

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Read device descriptor data over
1 |bRequest 0x07 | “Set_Descriptor” EPOBUF.
2 |wValueL 0x00
3 |wValueH 0x01 | Descriptor Type: Device
4 | windexL 0x00
5 |windexH 0x00
6 |wLengthL LenL
7 |wLengthH LenH

Table 2-16. Set Descriptor-Configuration

Byte Field Value Meaning Firmware Response
0 | bmRequestType 0x00 | OUT, Device Read configuration descriptor
1 |bRequest 0x07 | “Set_Descriptor” data over EPOBUF.
2 |wValueL 0x00
3 | wValueH 0x02 | Descriptor Type: Configuration
4 | windexL 0x00
5 | windexH 0x00
6 |wLengthL LenL
7 |wLengthH LenH

Chapter 2. Endpoint Zero Page 2-17

EZ-USB FX2 Technical Reference Manual

Byte
0

1
2
3
4
5
6
7

Field
bmRequestType
bRequest
wValueL
wValueH
windexL
windexH
wLengthL
wLengthH

Table 2-17. Set Descriptor-String

Value
0x00
0x07
0x00
0x03
0x00
0x00
LenL
LenH

Meaning Firmware Response
IN, Device Read string descriptor data over
“Get_Descriptor” EPOBUF.

String Number
Descriptor Type: String
(Language ID L)
(Language ID H)

The firmware handles Set Descriptor requests by clearing the HSNAK bit (by writing 1 to it), then
reading descriptor data directly from the EPOBUF buffer. The FX2 keeps track of the number of
byes transferred from the host into EPOBUF, and compares this number with the length field in
bytes 6 and 7. When the proper number of bytes has been transferred, the FX2 automatically
responds to the STATUS phase, which is the third and final stage of the CONTROL transfer.

WA

The firmware controls the flow of data in the Data Stage of a Control Transfer. After the firmware
processes each OUT packet, it writes any value into the endpoint’s byte count register to re-arm
the endpoint.

Page 2-18

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Configurations, Interfaces, and Alternate Settings

A USB device has one or more configu-
rations. Only one configuration is active
at any time.
))) Qonfig 1 Config 2
A configuration has one or more inter- High Power Low Power
faces, all of which are concurrently
active. Multiple interfaces allow different
host-side device drivers to be associated o A
. . . . nterrace nterrace
with different portions of a USB device. CDROM | | Imterface 1 | | Interface 2 data
audio video
control storage
Each interface has one or more alternate /\
settings. Each alternate setting has a Alt Seting Alt Seting Alt Seting o
collection of one or more endpoints. 0 L 3 nea atime

This structure is a software model; the FX2 takes no action when these settings change.
However, the firmware must re-initialize endpoints when the host changes configurations
or interfaces alternate settings.

As far as the firmware is concerned, a configuration is simply a byte variable that indicates
the current setting.

The host issues a Set Configuration request to select a configuration, and a Get Configura-
tion request to determine the current configuration.

Chapter 2. Endpoint Zero Page 2-19

EZ-USB FX2 Technical Reference Manual

2.3.5.1 Set Configuration

Table 2-18. Set Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Read and store CFG, change
1 |bRequest 0x09 | “Set Configuration” configurations in firmware.
2 |wValueL CFG | Configuration Number
3 |wValueH 0x00
4 | windexL 0x00
5 |windexH 0x00
6 |wLengthL 0x00
7 |wLengthH 0x00

When the host issues the Set Configuration request, the firmware saves the configuration number
(byte 2, CFG, in Tabl e2-18), performs any internal operations necessary to support the configura-
tion, and finally clears the HSNAK bit (by writing 1 to it) to terminate the Set Configuration
CONTROL transfer.

A
After setting a configuration, the host issues Set Interface commands to set up the various inter-
faces contained in the configuration.

2.3.6 Get Configuration

Table 2-19. Get Configuration

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x80 | IN, Device Send CFG over EPO after
1 |bRequest 0x08 | “Get Configuration” | re-configuring.

2 | wValueL 0x00
3 | wValueH 0x00
4 | windexL 0x00
5 |windexH 0x00
6 |wLengthL 1 LenL
7 | wLengthH 0 LenH

When the host issues the Get Configuration request, the firmware returns the current configuration
number. It loads the configuration number into EPOBUF, loads a byte count of one into EPOBCH:L,
and finally clears the HSHAK bit (by writing 1 to it) to terminate the Set Configuration CONTROL
transfer.

Page 2-20 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

2.3.7 Set Interface

This confusingly-named USB command actually sets alternate settings for a specified interface.

USB devices can have multiple concurrent interfaces. For example, a device may have an audio
system that supports different sample rates, and a graphic control panel that supports different lan-
guages. Each interface has a collection of endpoints. Except for endpoint 0, which each interface
uses for device control, endpoints may not be shared between interfaces.

Interfaces may report alternate settings in their descriptors. For example, the audio interface may
have setting 0, 1, and 2 for 8-KHz, 22-KHz, and 44-KHz sample rates. The panel interface may
have settings 0 and 1 for English and Spanish. The Set/Get Interface requests select among the
various alternate settings in an interface.

Table 2-20. Set Interface (Actually, Set Alternate Setting #AS for Interface #IF)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x00 | OUT, Device Read and store byte 2 (AS) for
1 |bRequest 0x0B | “Set Interface” Interface #IF, change setting for
2 |wValueL AS | Alternate Setting Number | Interface #IF in firmware.
3 |wValueH 0x00
4 | windexL IF Interface Number
5 |windexH 0x00
6 |wLengthL 0x00
7 |wLengthH 0x00

The firmware should respond to a Set Interface request by performing the following steps:

1. Perform the internal operation requested (such as adjusting a sampling rate).
2. Reset the data toggles for every endpoint in the interface.

3. Restore the endpoints to their default conditions, ready to send or accept data. For EP1 IN, for
example, firmware should clear the BUSY bit in the EP1CS register; for EP1OUT, firmware
should load any value into the EP1 byte-count register.

4. Clear the HSNAK bit (by writing 1 to it) to terminate the Set Interface CONTROL transfer.

Chapter 2. Endpoint Zero Page 2-21

EZ-USB FX2 Technical Reference Manual

2.3.8 Get Interface

Table 2-21. Get Interface (Actually, Get Alternate Setting #AS for interface #IF)

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x81 | IN, Device Send AS for Interface #IF over
1 |bRequest 0x0A | “Get Interface” EPO.
2 |wValueL 0x00
3 |wValueH 0x00
4 | windexL IF Interface Number
5 |windexH 0x00
6 |wLengthL 1 LenL
7 |wLengthH 0 LenH

When the host issues the Get Interface request, the firmware simply returns the alternate setting
for the requested interface IF and clears the HSNAK bit (by writing 1 to it).

2.3.9 Set Address

When a USB device is first plugged in, it responds to device address 0 until the host assigns it a
unique address using the Set Address request. The FX2 copies this device address into the
FNADDR (Function Address) register, then subsequently responds only to requests to this
address. This address is in effect until the USB device is unplugged, the host issues a USB Reset,
or the host powers down.

The FNADDR register is read-only. Whenever the FX2 ReNumeratesld (see Chapter 3, "Enumer-
ation and ReNumeration™"), it automatically resets FNADDR to zero, allowing the device to come
back as new.

An FX2 program does not need to know the device address, because the FX2 automatically

responds only to the host-assigned FNADDR value. The device address is readable only for
debug/diagnostic purposes.

Page 2-22 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

2.3.10 Sync Frame

Table 2-22. Sync Frame

Byte Field Value Meaning Firmware Response
0 |bmRequestType 0x82 | IN, Endpoint Send a frame number over EPO
1 |bRequest 0x0C | “Sync Frame” to synchronize endpoint #EP
2 | wValueL 0x00
3 wValueH 0x00
4 | windexL EP Endpoint number
5 | windexH 0x00
6 |wLengthL 2 LenL
7 | wLengthH 0 LenH

The Sync Frame request is used to establish a marker in time so the host and USB device can
synchronize multi-frame transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300-byte packets
transmitted from host to device over EP8-OUT. Both host and device maintain sequence counters
that count repeatedly from 1 to 5 to keep track of the packets inside a transmission. To start up in
sync, both host and device need to reset their counts to “0” at the same time (in the same frame).

To get in sync, the host issues the Sync Frame request with EP=EP8OUT (0x08). The firmware
responds by loading EPOBUF with a two-byte frame count for some future time; for example, the
current frame plus 20. This marks frame “current+20” as the sync frame, during which both sides
initialize their sequence counters to “0.” The current frame count is always available in the USB-
FRAMEL and USBFRAMEH registers.

Multiple isochronous endpoints can be synchronized in this manner; the firmware can keep a sep-
arate internal sequence count for each endpoint.

About USB Frames

In full-speed mode (12 Mbps), the USB host issues an SOF (Start Of Frame) packet once
every millisecond. Every SOF packet contains an 11-bit (mod-2048) frame number. The firm-
ware services all isochronous transfers at SOF time, using a single SOF interrupt request
and vector. If the FX2 detects a missing or garbled SOF packet, it can use an internal counter
to generate the SOF interrupt automatically.

In high-speed (480 Mbps) mode, each frame is divided into eight 125-microsecond microf-
rames. Although the frame counter still increments only once per frame, the host issues an
SOF every microframe. The host and device always synchronize on the zero-th microframe
of the frame specified in the device’s response to the Sync Frame request; there’s no mech-
anism for synchronizing on any other microframe.

Chapter 2. Endpoint Zero Page 2-23

EZ-USB FX2 Technical Reference Manual

2.3.11 Firmware Load

The USB endpoint-zero protocol provides a mechanism for mixing vendor-specific requests with
standard device requests. Bits 6:5 of the bmRequestType field are set to 00 for a standard device
request and to 10 for a vendor request.

Table 2-23. Firmware Download

Byte Field Value Meaning Firmware Response

0 |bmRequestType 0x40 | Vendor Request, OUT | None required.

1 |bRequest O0xAO0 | “Firmware Load”

2 | wValueL AddrL | Starting address

3 | wValueH AddrH

4 | windexL 0x00

5 | windexH 0x00

6 |wLengthL LenL | Number of bytes

7 | wLengthH LenH

Table 2-24. Firmware Upload

Byte Field Value Meaning Firmware Response

0 |bmRequestType 0xCO | Vendor Request, IN None Required.

1 |bRequest OxAO0 | “Firmware Load”

2 | wValueL AddrL | Starting address

3 | wValueH AddrH

4 |windexL 0x00

5 | windexH 0x00

6 |wLengthL LenL | Number of Bytes

7 | wLengthH LenH

The FX2 responds to two endpoint-zero vendor requests, RAM Download and RAM Upload.
These requests are active whether RENUM=0 or RENUM=1.

Because bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest value
(OxAO0) is required for the upload and download requests. These RAM load commands are avail-
able to any USB device that uses the FX2 chip.

A host loader program will typically write 0x01 to the CPUCS register to put the FX2's CPU into

RESET, load all or part of the FX2's internal RAM with code, then reload the CPUCS register with
0 to take the CPU out of RESET.

Page 2-24 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 3 Enumeration and ReNumeration™

3.1 Introduction

The FX2's configuration is soft: Code and data are stored in internal RAM, which can be loaded
from the host over the USB interface. FX2-based USB peripherals can operate without ROM,
EPROM, or FLASH memory, shortening production lead times and making firmware updates
extremely simple.

To support this soft configuration, the FX2 is capable of enumerating as a USB device without firm-
ware. This automatically-enumerated USB device (the Default USB Device) contains a set of inter-
faces and endpoints and can accept firmware downloaded from the host.

NG

Two separate Default USB Devices actually exist, one for enumeration as a full speed (12 Mbits/
sec) device, and the other for enumeration as a high speed (480 Mbits/sec) device. The FX2 auto-
matically performs the speed-detect protocol and chooses the proper Default USB Device. The two

sets of Default USB Device descriptors are shown in Appendices A and B.

Once the Default USB Device enumerates, it downloads firmware and descriptor tables from the
host into the FX2’s on-chip RAM. The FX2 then begins executing the downloaded code, which
electrically simulates a physical disconnect/connect from the USB and causes the FX2 to enumer-
ate again as a second device, this time taking on the USB personality defined by the downloaded
code and descriptors. This patented secondary enumeration process is called “ReNumeration™.”

An FX2 register bit called RENUM controls whether device requests over endpoint zero are han-
dled by firmware or automatically by the Default USB Device. When RENUM=0, the Default USB
Device handles the requests automatically; when RENUM=1, they must be handled by firmware.

3.2 FX2 Startup Modes

When the FX2 comes out of reset, it can act in various ways to establish itself as a USB device.
FX2 power-on behavior depends on several factors:

Chapter 3. Enumeration and ReNumeration™ Page 3-1

EZ-USB FX2 Technical Reference Manual

1. If no off-chip memory (either on the I12C-compatible bus or on the address/data bus) is con-
nected to the FX2, it enumerates as the Default USB Device, with descriptors and VID / PID /
DID supplied by hardwired internal logic (Table 3-3). RENUM is set to 0, indicating that the
Default USB Device automatically handles device requests.

2. If an EEPROM containing custom VID / PID / DID values is attached to the FX2's SCL and
SDA pins, FX2 also enumerates as the Default USB Device as above, but it substitutes the
VID / PID / DID values from the EEPROM for its internal values. The EEPROM must contain
the value OxCO in its first byte to indicate this mode to FX2, so this mode is called a “CO Load".
As above, RENUM is automatically set to 0, indicating that the Default USB Device automati-
cally handles device requests. A 16-byte EEPROM is sufficiently large for a CO Load.

3. If an EEPROM containing FX2 firmware is attached to the SCL and SDA pins, the firmware is
automatically loaded from the EEPROM into the FX2's on-chip RAM, and then the CPU is
taken out of reset to execute this boot-loaded code. In this case, the VID / PID / DID values
are encapsulated in the firmware; the RENUM bit is automatically set to 1 to indicate that the
firmware, not the Default USB Device, handles device requests. The EEPROM must contain
the value OxC2 in its first byte to indicate this mode to FX2, so this mode is called a “C2 Load".
Although the FX2 can perform C2 Loads from EEPROMSs as large as 64KB, code can only be
downloaded to the 8K of on-chip RAM.

4. If a Flash, EPROM, or other memory is attached to the FX2’'s address/data bus (128-pin pack-
age only) and a properly formatted EEPROM meeting the requirements above is not present,
and the EA pin is tied high (indicating that the FX2 starts code execution at 0x0000 from off-
chip memory), the FX2 begins executing firmware from the off-chip memory. In this case, the
VID / PID / DID values are encapsulated in the firmware; the RENUM bit is automatically set to
1 to indicate that the firmware, not internal FX2 logic, handles device requests.

Case (2) is the most frequently used mode when soft operation is desired, since the VID/PID val-
ues from EEPROM always bind the device to the appropriate host driver while allowing FX2 firm-
ware to be easily updated. In this case, the host first uses the FX2 Default USB Device to
download firmware, then the host takes the CPU out of reset so that it can execute the down-
loaded code. Section 3.8, "FX2 Vendor Request for Firmware Load" describes the USB Vendor
Request that the FX2 supports for code download and upload.

NG

The Default USB Device is fully characterized in Appendices A and B, which list the built-in FX2
descriptor tables for full-speed and high-speed enumeration, respectively. Studying these Appen-
dices in conjunction with Tables 3-1 and 3-2 is an excellent way to learn the structure of USB
descriptors.

Page 3-2 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

3.3 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface (interface
0) and alternate settings 0, 1, 2 and 3. The endpoints and MaxPacketSizes reported for this device
are shown in Table 3-1 (full speed) and Table 3-2 (high speed). Note that alternate setting zero
consumes no interrupt or isochronous bandwidth, as recommended by the USB Specification.

Table 3-1. Default Full-speed Alternate Settings

Alternate Setting 0 1 2 3
ep0 64 64 64 64
eplout 0 64 bulk 64 int 64 int
eplin 0 64 bulk 64 int 64 int
ep2 0 64 bulk out (2x) 64 int out (2x) 64 iso out (2x)
ep4 0 64 bulk out (2x) 64 bulk out (2x) 64 bulk out (2x)
ep6 0 64 bulk in (2x) 64 intin (2x) 64 iso in (2x)
ep8 0 64 bulk in (2x) 64 bulk in (2x) 64 bulk in (2x)

Note: “0” means “not implemented”, “2x” means double buffered.

Table 3-2. Default High-speed Alternate Settings

Alternate Setting 0 1 2 3
ep0 64 64 64 64
eplout 0 512 bulk 64 int 64 int
eplin 0 512 bulk 64 int 64 int
ep2 0 512 bulk out (2x) 512 int out (2x) 512 iso out (2x)
ep4 0 512 bulk out (2x) 512 bulk out (2x) 512 bulk out (2x)
ep6 0 512 bulk in (2x) 512 intin (2x) 512 is0 in (2x)
ep8 0 512 bulk in (2x) 512 bulk in (2x) 512 bulk in (2x)

Note: “0” means “not implemented”, “2x” means double buffered.

#

Although the physical size of the EP1 endpoint buffer is 64 bytes, it is reported as a 512-byte buffer
for high-speed alternate setting 1. This maintains compatibility with the USB 2.0 specification,
which allows only 512-byte bulk endpoints. If you use this default alternate setting (for testing, for

example), be sure to limit EP1 packet sizes to 64 bytes.

When FX2 logic establishes the Default USB Device shown in Table 3-1 orTabl e3-2, it also sets
the various endpoint configuration bits to match the descriptor data. For example, bulk endpoints
2, 4, and 6 are implemented in the Default USB Device, so the FX2 logic sets the corresponding
EPVAL (Endpoint Valid) bits.

Chapter 8 "Access to Endpoint Buffers" contains a detailed explanation of the EPVAL bits.

Chapter 3. Enumeration and ReNumeration™ Page 3-3

EZ-USB FX2 Technical Reference Manual

3.4 EEPROM Boot-load Data Formats

This section describes three EEPROM boot-load scenarios and the EEPROM data formats that
support them. The three scenarios are:

* No EEPROM, or EEPROM with invalid boot data
* “C0" EEPROM (load custom VID / PID / DID only)

* “C2" EEPROM (load firmware to on-chip RAM)

3.4.1 No EEPROM or Invalid EEPROM

In the simplest scenario, either no serial EEPROM is present on the 12C-compatible bus or an
EEPROM is present, but its first byte is neither OxC0 nor 0xC2. In this case, descriptor data is sup-
plied by hardwired internal FX2 tables. The FX2 enumerates as the Default USB Device, with the
ID bytes shown in Table 3-3.

NG
Pull-up resistors are required on the SCL/SDA pins even if no device is connected. The resistors
are required to allow FX2 logic to detect the “No EEPROM / Invalid EEPROM” condition.

Table 3-3. FX2 Device Characteristics, No EEPROM / Invalid EEPROM

Vendor ID 0x04B4 (Cypress Semiconductor/)
Product ID 0x8613 (EZ-USB FX2)

Device Release O0xXXYY (depends on revision)

The USB host queries the FX2 Default USB Device during enumeration, reads its device descrip-
tor, and uses the IDs in Table 3-3 to determine which software driver to load into the operating sys-
tem. This is a major USB feature — drivers are dynamically matched with devices and
automatically loaded when a device is plugged in.

The “No EEPROM / Invalid EEPROM” scenario is the simplest configuration, and also the most
limiting. This configuration must only be used for code development, utilizing Cypress software
tools matched to the ID values in Table 3-3; no USB peripheral based on the FX2 may use this
configuration.

Page 3-4 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

3.4.2 Serial EEPROM Present, First Byte is 0xCO

Table 3-4. “CO Load” Format

EEPROM Address Contents
0xCO

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L
Device ID (DID) H
Configuration byte

N[O | W NP O

If, at power-on reset, the FX2 detects an EEPROM connected to its 12C-compatible bus with the
value OxCO at address 0, the FX2 automatically copies the Vendor ID (VID), Product ID (PID), and
Device ID (DID) from the EEPROM (Table 3-4) into internal storage. The FX2 then supplies these
EEPROM bytes to the host as part of its response to the host’'s Get_Descriptor-Device request
(these six bytes replace only the VID / PID / DID bytes in the Default USB Device descriptor). This
causes a host driver matched to the VID / PID / DID values in the EEPROM to be loaded by the
host OS.

After initial enumeration, that host driver downloads FX2 firmware and USB descriptor data into the
FX2's RAM and starts the CPU. The FX2 then ReNumerates™ as a custom device. At that point,
the host may load a new driver, bound to the just-loaded VID / PID / DID.

The eighth EEPROM byte contains configuration bits that control the following:

e |2C-compatible bus speed. Default is 100 KHz.
« Disconnect polarity. Default is for FX2 to come out of reset connected to USB.

FX2 firmware can change the 12C-compatible bus speed using control-register bits, so an
EEPROM is not required in order to override the default setting. However, the firmware cannot
modify the disconnect polarity; if it's desired for the FX2 to come out of reset disconnected from
USB, a “C0” or “C2” EEPROM must be connected.

&

Section 3.5 "EEPROM Configuration Byte" contains a full description of the configurations bits.

Chapter 3. Enumeration and ReNumeration™ Page 3-5

EZ-USB FX2 Technical Reference Manual

3.4.3 Serial EEPROM Present, First Byte is 0xC2

If, at power-on reset, the FX2 detects an EEPROM connected to its 12C -compatible with the value
0xC2 at address 0, the FX2 loads the EEPROM data into RAM. It also sets the RENUM bit to 1,
causing device requests to be handled by the firmware instead of the Default USB Device. The
“C2 Load” EEPROM data format is shown in Table3-5.

Table 3-5. “C2 Load” Format

EEPROM Address Contents

0xC2

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
Device ID (DID) L
Device ID (DID) H
Configuration byte
Length H

Length L

10 Start Address H
11 Start Address L
Data Block

Ol N0 B~ W[N| | O

Length H
Length L

—— Start Address H
Start Address L
Data Block

0x80
- 0x01
- OxE6
0x00
last 00000000

The first byte indicates a “C2 load”, which instructs the FX2 to copy the EEPROM data into RAM.
The FX2 reads the next six bytes (VID / PID / DID) even though they aren’t used by most C2-Load
applications. The eighth byte (byte 7) is the configuration byte described in the previous section.

Page 3-6 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS
NG

Bytes 1-6 of a C2 EEPROM can be loaded with VID / PID / DID bytes if it is desired at some point
to run the firmware with RENUM = 0 (i.e., FX2 logic handles device requests), using the EEPROM
VID / PID / DID rather than the development-only VID / PID / DID values shown in Table 3-3.

One or more data records follow, starting at EEPROM address 8. Each data record consists of a
10-bit Length field (0-1023) which indicates the number of bytes in the following data block, a 13-
bit Start Address (0-Ox1FFF) for the data block, and the data block itself.

The last data record, which must always consist of a single-byte load of 0x00 to the CPUCS regis-
ter at OXE600, is marked with a “1” in the most-significant bit of the Length field. Only the least-sig-
nificant bit (8051RES) of this byte is writable by the download; that bit is set to zero to bring the
CPU out of reset.

NG
Serial EEPROM data can be loaded only into these three on-chip RAM spaces:

* Program / Data RAM at 0x0000-0x1FFF
» Data RAM at OXEOOO-OXE1FF
* The CPUCS register at 0XE600 (only bit 0, 8051RES, is EEPROM-loadable).

General-Purpose Use of the 12C-Compatible Bus

The FX2's I2C-compatible controller serves two purposes. First, as described in this chapter,
it manages the serial EEPROM interface that operates automatically at power-on to deter-
mine the enumeration method. Second, once the CPU is up and running, firmware can
access the 12C-compatible controller for general-purpose use. This makes a wide range of
standard 12C peripherals available to an FX2-based system.

Other 12C devices can be attached to the SCL and SDA lines as long as there is no address
conflict with the serial EEPROM described in this chapter. Chapter 13, "Input/Output”
describes the general-purpose nature of the [2C-compatible interface.

Chapter 3. Enumeration and ReNumeration™ Page 3-7

EZ-USB FX2 Technical Reference Manual

3.5 EEPROM Configuration Byte

The configuration byte is valid for both EEPROM load formats (CO and C2) and has the following

format:
Configuration
b7 b6 b5 b4 b3 b2 bl bo |
0 DISCON 0 0 0 0 0 400KHz |
Figure 3-1. EEPROM Configuration Byte
Bit 6: DISCON USB Disconnect

A USB hub or host detects attachment of a full-speed device by sensing a high level on the D+
wire. A USB device provides this high level using a 1500-ohm resistor between D+ and 3.3V (the
D+ line is normally low, pulled down by a 15 K-ohm resistor in the hub or host). The 1500-ohm
resistor is internal to the FX2.

The FX2 accomplishes ReNumeration by selectively driving or floating the 3.3V supply to its inter-
nal 1500-ohm resistor. When the supply is floated, the host no longer “sees” the FX2; it appears to
have been disconnected from the USB. When the supply is then driven, the FX2 appears to have
been newly-connected to the USB. From the host’s point of view, the FX2 can be disconnected

and re-connected to the USB, without ever physically disconnecting.

The “connect state” of FX2 is controlled by a register bit called DISCON (USBCS.3), which
defaults to 0, or “connected”. This default may be overridden by setting the DISCON bit in the
EEPROM configuration byte to 1. This bit is copied into the USBCS.3 bit before the CPU is taken

out of reset. Once the CPU is running, firmware can modify this bit.

Bit O:

0: 100 KHz
1: 400 KHz

400KHz

[2C-compatible bus speed

If 400KHZ=0, the 12C-compatible bus operates at approximately 100 KHz. If 400KHZ=1, the
I2C-compatible bus operates at approximately 400 KHz. This bit is copied to I2CCTL.0, whose
default value is 0, or “100 KHz". Once the CPU is running, firmware can modify this bit.

Page 3-8

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

3.6 The RENUM Bit

An FX2 control bit called “RENUM” (ReNumerated) determines whether USB device requests over
endpoint zero are handled by the Default USB Device or by FX2 firmware. At power-on reset, the
RENUM bit (USBCS.1) is zero, indicating that the Default USB Device will automatically handle
USB device requests. Once firmware has been downloaded to the FX2 and the CPU is running, it
can set RENUM=1 so that subsequent device requests will be handled by the downloaded firm-
ware and descriptor tables. Chapter 2, "Endpoint Zero" describes how the firmware handles device
requests while RENUM=L1.

If a 128-pin FX2 is using off-chip code memory at 0x0000 and there is no boot EEPROM to supply
a custom Vendor ID and Product ID, the FX2 automatically sets the RENUM bit to 1 so that device
requests are always handled by the firmware and descriptor tables in the off-chip memory. The
FX2 also sets RENUM=1 after a “C2 load” if the EA pin is low. In this case, firmware execution
begins in internal RAM using the code loaded from the EEPROM, with the firmware handling all
USB requests.

Another Use for the Default USB Device

The Default USB Device is established at power-on to set up a USB device capable of down-
loading firmware into the FX2's RAM. Another useful feature of the Default USB Device is
that FX2 code can be written to support the already-configured generic USB device. Before
bringing the CPU out of reset, the FX2 automatically enables certain endpoints and reports
them to the host via descriptors. By utilizing the Default USB Device (i.e., by keeping
RENUM=0), the firmware can, with very little code, perform meaningful USB transfers that
use these pre-configured endpoints. This accelerates the USB learning curve.

Chapter 3. Enumeration and ReNumeration™ Page 3-9

EZ-USB FX2 Technical Reference Manual

3.7 FX2 Response to Device Requests (RENUM=0)

Table 3-6 shows how the Default USB Device responds to endpoint zero device requests when
RENUM=0.

Table 3-6. How the Default USB Device Handles EPO Requests When RENUM=0

bRequest Name FX2 Response
0x00 Get Status-Device Returns two zero bytes
0x00 Get Status-Endpoint Supplies EP Stall bit for indicated EP
0x00 Get Status-Interface Returns two zero bytes
0x01 Clear Feature-Device None
0x01 Clear Feature-Endpoint Clears Stall bit for indicated EP
0x02 (reserved) None
0x03 Set Feature-Device None
0x03 Set Feature-Endpoint Sets Stall bit for indicated EP
0x04 (reserved) None
0x05 Set Address Updates FNADD register
0x06 Get Descriptor Supplies internal table
0x07 Set Descriptor None
0x08 Get Configuration Returns internal value
0x09 Set Configuration Sets internal value
O0x0A Get Interface Returns internal value (0-3)
0x0B Set Interface Sets internal value (0-3)
0x0C Sync Frame None
Vendor Requests
0xAO0 Firmware Load Upload/Download RAM
0xA1-OxAF |Reserved Reserved by Cypress Semiconductor
all other None

A USB host enumerates by issuing Set_Address, Get_Descriptor, and Set_Configuration (to 1)
requests (the Set_Address and Get_Address requests are used only during enumeration). After
enumeration, the Default USB Device will respond to the following device requests from the host:

e Set or clear an endpoint stall (Set/Clear Feature_Endpoint)

» Read the stall status for an endpoint (Get_Status-Endpoint)

» Set/Read an 8-bit configuration number (Set/Get_Configuration)
» Set/Read a 2-bit interface alternate setting (Set/Get_Interface)

e Download or upload FX2 RAM

Page 3-10 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

3.8 FX2 Vendor Request for Firmware Load

Prior to ReNumeration, the host downloads data into the FX2's internal RAM. The host can access
two on-chip FX2 RAM spaces — Program / Data RAM at 0x0000-Ox1FFF and Data RAM at
0XEO000-OxE1FF — which it can download or upload whether the CPU is in reset or running: These
two RAM spaces may also be boot-loaded by a “C2" EEPROM connected to the 12C-compatible
bus. The host may also write to the CPUCS register to put the CPU in or out of reset.

Off-chip RAM (on the 128-pin FX2's address/data bus) cannot be uploaded or downloaded by the
host via the “Firmware Load” vendor request.

The USB Specification provides for vendor-specific requests to be sent over endpoint zero. The
FX2 uses this feature to transfer data between the host and FX2 RAM. The FX2 automatically
responds to two “Firmware Load” requests, as shown inTabl e3-7 and Table 3-8.

Table 3-7. Firmware Download

Byte Field Value Meaning Rest)i)znse
0 bmRequest | 0x40 Vendor Request, OUT | None required
1 bRequest OxAO “Firmware Load”

2 wValueL AddrL Starting Address
3 wValueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wLenghtL LenL Number of Bytes
7 wLengthH LenH
Table 3-8. Firmware Upload
Byte Field Value Meaning Resl,:g(oznse
0 bmRequest 0xCO Vendor Request, IN | None required
1 bRequest OxAO0 “Firmware Load”
2 |wValueL AddrL |Starting Address
3 |wvalueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wlLengthL LenL Number of Bytes
7 |wLengthH LenH

Chapter 3. Enumeration and ReNumeration™ Page 3-11

EZ-USB FX2 Technical Reference Manual

These upload and download requests are always handled by the FX2, regardless of the state of
the RENUM bit.

The bRequest value 0xAO is reserved for this purpose. It should never be used for another vendor
request. Cypress Semiconductor also reserves bRequest values 0xAl through OxAF; devices
should not use these bRequest values.

A host loader program will typically write 0x01 to the CPUCS register to put the CPU into RESET,
load all or part of the FX2 RAM with firmware, then reload the CPUCS register with 0 to take the

CPU out of RESET. The CPUCS register (at OXE600) is the only FX2 register that can be written

using the Firmware Download command.

3.9 How the Firmware ReNumerates

Two control bits in the USBCS (USB Control and Status) register control the ReNumeration™ pro-
cess: DISCON and RENUM.

USBCS USB Control and Status E680
b7 b6 b5 b4 b3 b2 b1l b0
DISCON RENUM
R/W R R R R/W R/W R/W R/W
0 0 0 0 0 1 0 0

Figure 3-2. USB Control and Status Register

To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears
DISCON to 0.

Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware
or the Default USB Device will handle device requests over endpoint zero: if RENUM=0, the
Default USB Device will handle device requests; if RENUM=1, the firmware will.

3.10 Multiple ReNumerations™

FX2 firmware can ReNumerate™ anytime. One use for this capability might be to fine tune an iso-
chronous endpoint’'s bandwidth requests by trying various descriptor values and ReNumerating.

Page 3-12 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 4 Interrupts

4.1 Introduction

The EZ-USB FX2's interrupt architecture is an enhanced and expanded version of the standard
8051's. The FX2 responds to the interrupts shown in Table 4-1; interrupt sources that are not
present in the standard 8051 are shown in bold type.

Table 4-1. FX2 Interrupts

Interrupt | Natural

FX2 Interrupt Source Vector Priority
IEO INTO Pin 0x0003 1
TFO Timer 0 Overflow 0x000B 2
IE1 INT1 Pin 0x0013 3
TF1 Timer 1 Overflow 0x001B 4
RI_LO&TILO USARTO Rx & Tx 0x0023 5
TF2 Timer 2 Overflow 0x002B 6
Resume WAKEUP / WU2 Pin or USB Resume | 0x0033 0
RL1&TIL1 USART1 Rx & Tx 0x003B 7
USBINT USB 0x0043 8
[2CINT [2C-Compatible Bus 0x004B 9
IE4 GPIF / FIFOs / INT4 Pin 0x0053 10
IE5 INT5 Pin 0x005B 1
IE6 INT6 Pin 0x0063 12

The Natural Priority column in Table 4-1 shows the FX2 interrupt priorities. As explained in Chap-
ter 14, "Timers/Counters and Serial Interface", the FX2 can assign each interrupt to a high or low
priority group. The FX2 resolves priorities within the groups using the natural priorities.

Chapter 4. Interrupts Page 4-1

EZ-USB FX2 Technical Reference Manual

4.2 SFRs

The following SFRs are associated with interrupt control:

IE - SFR OxA8 (Table 4-2)

IP - SFR 0xB8 (Table 4-3)

EXIF - SFR 0x91 (Table 4-4)

EICON - SFR 0xD8 (Table 4-5)

EIE - SFR OXES8 (Table 4-6)

EIP - SFR OxF8 (Table 4-7)

The IE and IP SFRs provide interrupt enable and priority control for the standard interrupt unit, as
with the standard 8051. Additionally, these SFRs provide control bits for the Serial Port 1 interrupt.

The EXIF, EICON, EIE and EIP Registers provide flags, enable control, and priority control.

Bit

IE.7

IE.6

IE.5

IE.4

IE.3

IE.2

IE.1

IE.O

Page 4-2

Table 4-2. |E Register — SFR OxA8

Function

EA - Global interrupt enable. Controls masking of all interrupts except USB wakeup
(resume). EA = 0 disables all interrupts except USB wakeup. When EA = 1, interrupts are
enabled or masked by their individual enable bits.

ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Serial port 1 interrupts (TI_1 and
RI_1). ES1 = 1 enables interrupts generated by the TI_1 or RI_1 flag.

ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2=1 enables
interrupts generated by the TF2 or EXF2 flag.

ESO - Enable Serial Port 0 interrupt. ESO = 0 disables Serial Port 0 interrupts (TI_0 and
RI_0). ES0=1 enables interrupts generated by the TI_0 or RI_0 flag.

ET1 - Enable Timer 1 interrupt. ET1 = O disables Timer 1 interrupt (TF1). ET1=1 enables
interrupts generated by the TF1 flag.

EX1 - Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (INT1). EX1=1
enables interrupts generated by the INT1 pin.

ETO - Enable Timer O interrupt. ETO = 0 disables Timer 0 interrupt (TF0). ETO=1 enables
interrupts generated by the TFO flag.

EXO - Enable external interrupt 0. EX0 = 0 disables external interrupt O (INTO). EX0=1
enables interrupts generated by the INTO pin.

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Table 4-3. IP Register — SFR 0xB8

Bit Function
IP.7 Reserved. Read as 1.
IP.6 PS1 - Serial Port 1 interrupt priority control. PS1 = 0 sets Serial Port 1 interrupt

(TI_1 or RI_1) to low priority. PS1 = 1 sets Serial port 1 interrupt to high priority.

IP.5 PT2 - Timer 2 interrupt priority control. PT2 = 0 sets Timer 2 interrupt (TF2) to low
priority. PT2 = 1 sets Timer 2 interrupt to high priority.

IP.4 PSO0 - Serial Port 0 interrupt priority control. PSO = 0 sets Serial Port 0 interrupt
(T1_O or RI_0) to low priority. PS0 = 1 sets Serial Port 0 interrupt to high priority.

IP.3 PT1 - Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low
priority. PT1 = 1 sets Timer 1 interrupt to high priority.

IP.2 PX1 - External interrupt 1 priority control. PX1 = 0 sets external interrupt 1 (INT1)
to low priority. PT1 = 1 sets external interrupt 1 to high priority.

IP.1 PTO - Timer 0 interrupt priority control. PTO = 0 sets Timer 0 interrupt (TFO) to low
priority. PTO = 1 sets Timer 0 interrupt to high priority.

IP.0 PXO0 - External interrupt O priority control. PX0 = 0 sets external interrupt 0 (INTO)
to low priority. PX0 = 1 sets external interrupt O to high priority.

Table 4-4. EXIF Register — SFR 0x91

Bit Function

EXIF.7 IE5 - External Interrupt 5 flag. IE5 = 1 indicates a falling edge was detected at the
INTS5 pin. IE5 must be cleared by software. Setting IE5 in software generates an
interrupt, if enabled.

EXIF.6 IE4 - GPIF/FIFO/External Interrupt 4 flag. The “INT4” interrupt is internally con-
nected to the FIFO/GPIF interrupt by default; it can optionally function as Exter-
nal Interrupt 4 on the 100- and 128-pin FX2. When configured as External
Interrupt 4, IE4 indicates that a rising edge was detected at the INT4 pin. IE4
must be cleared by software. Setting IE4 in software generates an interrupt, if
enabled.

EXIF.5 I2CINT - I12C-Compatible Bus Interrupt flag. I2CINT = 1 indicates an 12C-Compati-
ble Bus interrupt. I2CINT must be cleared by software. Setting I2CINT in software
generates an interrupt, if enabled.

EXIF.4 USBINT - USB Interrupt flag. USBINT = 1 indicates an USB interrupt. USBINT
must be cleared by software. Setting USBINT in software generates an interrupt,
if enabled.

EXIF.3 Reserved. Read as 1.
EXIF.2-0 | Reserved. Read as 0.

Chapter 4. Interrupts Page 4-3

EZ-USB FX2 Technical Reference Manual

Table 4-5. EICON Register — SFR 0xD8

Bit Function

EICON.7 | SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1, the
baud rate for Serial Port 1 is doubled.

EICON.6 |Reserved. Read as 1.

EICON.5 | ERESI - Enable Resume interrupt. ERESI = 0 disables the Resume inter-
rupt. ERESI = 1 enables interrupts generated by the resume event.

EICON.4 | RESI - Wakeup interrupt flag. RESI = 1 indicates a false-to-true transition
was detected at the WAKEUP or WU pin, or that USB activity has resumed
from the suspended state. RESI must be cleared by software before exiting
the interrupt service routine, otherwise the interrupt will immediately be
reasserted. Setting RESI = 1 in software generates a wakeup interrupt, if
enabled.

EICON.3 |INT®6 - External interrupt 6. When INT6 = 1, the INT6 pin has detected a low
to high transition. INT6 must be cleared by software. Setting this bit in soft-
ware generates an INT6 interrupt, if enabled.

EICON.2-0 | Reserved. Read as 0.

Table 4-6. EIE Register — SFR OXE8

Bit Function
EIE.7-5 Reserved. Read as 1.

EIE.4 EX6 - Enable external interrupt 6. EX6 = 0 disables external interrupt 6
(INT6). EX6 = 1 enables interrupts generated by the INT6 pin.

EIE.3 EX5 - Enable external interrupt 5. EX5 = 0 disables external interrupt 5
(INT5). EX5 = 1 enables interrupts generated by the INT5 pin.

EIE.2 EX4 - Enable external interrupt 4. EX4 = 0 disables external interrupt 4
(INT4). EX4 = 1 enables interrupts generated by the INT4 pin or by the
FIFO/GPIF Interrupt.

EIE.1 EI2C - Enable 12C-Compatible Bus interrupt (I2CINT). EI2C = 0 disables the
[2C-Compatible Bus interrupt. EI2C = 1 enables interrupts generated by the
I2C-Compatible Bus controller.

EIE.O EUSB - Enable USB interrupt (USBINT). EUSB = 0 disables USB interrupts.
EUSB = 1 enables interrupts generated by the USB Interface.

Page 4-4 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Table 4-7. EIP Register — SFR OxF8

Bit Function
EIP.7-5 Reserved. Read as 1.

EIP.4 PX6 - External interrupt 6 priority control. PX6 = 0 sets external interrupt 6 (INT6)
to low priority. PX6 = 1 sets external interrupt 6 to high priority.

EIP.3 PX5 - External interrupt 5 priority control. PX5 = 0 sets external interrupt 5 (INT5)
to low priority. PX5=1 sets external interrupt 5 to high priority.

EIP.2 PX4 - External interrupt 4 priority control. PX4 = 0 sets external interrupt 4
(INT4 / GPIF / FIFO) to low priority. PX4=1 sets external interrupt 4 to high priority.

EIP.1 PI2C - I2CINT priority control. PI2C = 0 sets 12C-Compatible Bus interrupt to low pri-
ority. PI12C=1 sets 12C-Compatible Bus interrupt to high priority.

EIP.0 PUSB - USBINT priority control. PUSB = 0 sets USB interrupt to low priority.

PUSB=1 sets USB interrupt to high priority.

4.2.1 803x/805x Compatibility

The implementation of interrupts is similar to that of the Dallas Semiconductor DS80C320.
Table 4-8 summarizes the differences in interrupt implementation between the Intel 8051, the Dal-
las Semiconductor DS80C320, and the FX2.

Table 4-8. Summary of Interrupt Compatibility

Feature Intel Dallas Cypress
8051 DS80C320 FX2

Power Fail Interrupt Not implemented | Internally generated | Replaced with RESUME Interrupt

External Interrupt O Implemented Implemented Implemented

Timer O Interrupt Implemented Implemented Implemented

External Interrupt 1 Implemented Implemented Implemented

Timer 1 Interrupt Implemented Implemented Implemented

Serial Port O Interrupt Implemented Implemented Implemented

Timer 2 Interrupt Not implemented | Implemented Implemented

Serial Port 1 Interrupt Not implemented | Implemented Implemented

External Interrupt 2 Not implemented | Implemented Replaced with autovectored USB
Interrupt

External Interrupt 3 Not implemented | Implemented Replaced with 12C-Compatible Bus Inter-
rupt

External Interrupt 4 Not implemented | Implemented Replaced by autovectored FIFO/GPIF
Interrupt. Can be configured as External
Interrupt 4 on 100- and 128-pin FX2 only.

External Interrupt 5 Not implemented | Implemented Implemented

Watchdog Timer Interrupt| Not implemented | Internally generated | Replaced with External Interrupt 6

Real-time Clock Interrupt| Not implemented | Implemented Not implemented

Chapter 4. Interrupts

Page 4-5

EZ-USB FX2 Technical Reference Manual

4.3 Interrupt Processing

When an enabled interrupt occurs, the FX2 completes the instruction it's currently executing, then
vectors to the address of the interrupt service routine (ISR) associated with that interrupt (see
Table 4-9). The FX2 executes the ISR to completion unless another interrupt of higher priority
occurs. Each ISR ends with a RETI (return from interrupt) instruction. After executing the RETI ,
the FX2 continues executing firmware at the instruction following the one which was executing
when the interrupt occurred.

NG
The FX2 always completes the instruction in progress before servicing an interrupt. If the instruc-

tion in progress is RETI , or a write access to any of the IP, IE, EIP, or EIE SFRs, the FX2 com-
pletes one additional instruction before servicing the interrupt.

4.3.1 Interrupt Masking

The EA Bit in the IE SFR (IE.7) is a global enable for all interrupts except the RESUME (USB
wakeup) interrupt, which is always enabled. When EA = 1, each interrupt is enabled or masked by
its individual enable bit. When EA = 0, all interrupts are masked except the USB wakeup interrupt.

Table 4-9 provides a summary of interrupt sources, flags, enables, and priorities.

Page 4-6 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Table 4-9. Interrupt Flags, Enables, Priority Control, and Vectors

A Interrupt Interrupt Ass.'gr]ed Natural | Interrupt
Interrupt Description Priority .
Request Flag Enable Priority = Vector
Control
RESUME Resume interrupt EICON.4 EICON.5 | Always 0 0x0033
Highest (highest)
INTO External interrupt O TCON.1 IE.O IP.0 1 0x0003
TFO Timer O interrupt TCON.5 IE.1 IP.1 2 0x000B
INT1 External interrupt 1 TCON.3 IE.2 IP.2 3 0x0013
TF1 Timer 1 interrupt TCON.7 IE.3 IP.3 4 0x001B
TI_O or RI_O | Serial port O transmit or SCONO0.1 (TL.O) IE.4 IP.4 5 0x0023
receive interrupt SCONO0.0 (RI_0)
TF2 or EXF2 | Timer 2 interrupt T2CON.7 (TF2) |IE.5 IP.5 6 0x002B
T2CON.6 (EXF2)
TI_1 or RI_1 | Serial port 1 transmit or SCON1.1(TI_1) |IE.6 IP.6 7 0x003B
receive interrupt SCON1.0 (RI_1)
USBINT Autovectored USB interrupt | EXIF.4 EIE.O EIP.O 8 0x0043
[2CINT I2C-Compatible Bus inter- EXIT.5 EIE.1 EIP.1 9 0x004B
rupt
INT4 Autovectored FIFO / GPIF or |EXIF.6 EIE.2 EIP.2 10 0x0053
External interrupt 4
INTS External interrupt 5 EXIF.7 EIE.3 EIP.3 11 0x005B
INT6 External interrupt 6 EICON.3 EIE.4 EIP.4 12 0x0063

4.3.1.1 Interrupt Priorities

There are two stages of interrupt priority: assigned interrupt level and natural priority. Assigned pri-
ority is set by FX2 firmware; natural priority is as shown in Table 4-9, and is fixed.

The assigned interrupt level (highest, high, or low) takes precedence over natural priority. The
RESUME (USB wakeup) interrupt always has highest assigned priority and is the only interrupt
that can have highest assigned priority. All other interrupts can be assigned either high or low prior-

ity.

In addition to an assigned priority level (high or low), each interrupt also has a natural priority, as
listed in Table 4-9. Simultaneous interrupts with the same assigned priority level (for example, both
high) are resolved according to their natural priority. For example, if INTO and INT1 are both
assigned high priority and both occur simultaneously, INTO takes precedence due to its higher nat-
ural priority.

Once an interrupt is being serviced, only an interrupt of higher assigned priority level can interrupt
the service routine. That is, an ISR for a low-assigned-level interrupt can only be interrupted by a
high-assigned-level interrupt. An ISR for a high-assigned-level interrupt can only be interrupted by
the RESUME interrupt.

Chapter 4. Interrupts Page 4-7

EZ-USB FX2 Technical Reference Manual

4.3.2 Interrupt Sampling

The internal timers and serial ports generate interrupts by setting the interrupt flag bits shown in
Table 4-9. These interrupts are sampled once per instruction cycle (i.e., once every 4 CLKOUT
cycles).

INTO and INT1 are both active low and can be programmed to be either edge-sensitive or level-

sensitive, through the ITO and IT1 bits in the TCON SFR. When ITx = 0, INTx is level-sensitive and
the FX2 sets the |IEx flag when the INTX pin is sampled low. When ITx = 1, INTx is edge-sensitive
and the FX2 sets the IEx flag when the INTx pin is sampled high then low on consecutive samples.

The remaining five interrupts (INT 4-6, USB & 12C-Compatible Bus interrupts) are edge-sensitive
only. INT6 and INT4 are active high and INT5 is active low.

To ensure that edge-sensitive interrupts are detected, the interrupt pins should be held in each
state for a minimum of one instruction cycle (4 CLKOUT cycles). Level-sensitive interrupts are not
latched; their pins must remain asserted until the interrupt is serviced.

4.3.3 Interrupt Latency

Interrupt response time depends on the current state of the FX2. The fastest response time is 5
instruction cycles: 1 to detect the interrupt, and 4 to perform the LCALL to the ISR.

The maximum latency is 13 instruction cycles. This 13-cycle latency occurs when the FX2 is cur-
rently executing a RETI instruction followed by a MJL or DI V instruction. The 13 instruction cycles
in this case are: 1 to detect the interrupt, 3 to complete the RETI , 5 to execute the DI V or MUL, and
4 to execute the LCALL to the ISR.

This13-instruction-cycle latency excludes autovector latency for the USB and FIFO/GPIF inter-
rupts (see Sections 4.5 and 4.8). Autovectoring adds a fixed 4 instruction cycles, so the maximum
latency for an autovectored USB or FIFO/GPIF interrupt is 13 + 4 = 17 instruction cycles.

4.4 USB-Specific Interrupts

The FX2 provides 28 USB-specific interrupts. One, “Resume”, has its own dedicated interrupt; the
other 27 share the “USB” interrupt.

4.4.1 Resume Interrupt

After the FX2 has entered its idle state, it responds to an external signal on its WAKEUP/WU2 pins
or resumption of USB bus activity by restarting its oscillator and resuming firmware execution.

Chapter 6, "Power Management" describes suspend/resume signaling in detail, and presents an
example which uses the Wakeup Interrupt.

Page 4-8 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

4.4.2 USB Interrupts

Table 4-10 shows the 27 USB requests that share the USB Interrupt. Figur e4-1 shows the USB
Interrupt logic; the bottom IRQ, EP8ISOERR, is expanded in the diagram to show the logic which
is associated with each USB interrupt request.

Table 4-10. Individual USB Interrupt Sources

INT2VEC
Priority Value Source Notes
1 00 SUDAV SETUP Data Available
2 04 SOF Start of Frame (or microframe)
3 08 SUTOK Setup Token Received
4 ocC SUSPEND | USB Suspend request
5 10 USB RESET | Bus reset
6 14 HISPEED Entered high speed operation
7 18 EPOACK FX2 ACK'd the CONTROL Handshake
8 1C reserved
9 20 EPO-IN EPO-IN ready to be loaded with data
10 24 EPO-OUT EPO-OUT has USB data
11 28 EP1-IN EP1-IN ready to be loaded with data
12 2C EP1-OUT EP1-OUT has USB data
13 30 EP2 IN: buffer available. OUT: buffer has data
14 34 EP4 IN: buffer available. OUT: buffer has data
15 38 EP6 IN: buffer available. OUT: buffer has data
16 3C EP8 IN: buffer available. OUT: buffer has data
17 40 IBN IN-Bulk-NAK (any IN endpoint)
18 44 reserved
19 48 EPOPING EPO OUT was Pinged and it NAK'd
20 4C EP1PING EP1 OUT was Pinged and it NAK'd
21 50 EP2PING EP2 OUT was Pinged and it NAK'd
22 54 EP4PING EP4 OUT was Pinged and it NAK'd
23 58 EP6PING EP6 OUT was Pinged and it NAK'd
24 5C EP8PING EP8 OUT was Pinged and it NAK'd
25 60 ERRLIMIT Bus errors exceeded the programmed limit
26 64 reserved
27 68 reserved
28 6C reserved
29 70 EP2ISOERR | ISO EP2 OUT PID sequence error
30 74 EP4ISOERR | ISO EP4 OUT PID sequence error
31 78 EP6ISOERR | ISO EP6 OUT PID sequence error
32 7C EP8ISOERR | ISO EP8 OUT PID sequence error

Chapter 4. Interrupts Page 4-9

EZ-USB FX2 Technical Reference Manual

USB Interrupt

00
01
02
]
S
—_—
—
® —_—
—
o FX2 "USB"
S Interrupt
[—
— R
—
¢
—
—_—
—_—
—_—
—_—>
S

29 | EP4ISOERR
30 | EP6ISOERR

USBERRIE.7
31 | EPSISOERR S

USBERRIRQ.7 (1) R USBERRIRQ.7 (rd)] |

Interrupt Request Latch

—>INT2VEC

0 V4 | IV3 | IV2 | IV1 | IVO 0 0

Figure 4-1. USB Interrupts

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt request
latch. IRQ bits are set automatically by the FX2; firmware clears an IRQ bit by writing a “1” to it.
The output of each latch is ANDed with an Interrupt Enable Bit and then ORed with all the other
USB Interrupt request sources.

The FX2 prioritizes the USB interrupts and constructs an Autovector, which appears in the
INT2VEC register. The interrupt vector values IV[4:0] are shown to the left of the interrupt sources
(shaded boxes); 0 is the highest priority, 31 is the lowest. If two USB interrupts occur simulta-
neously, the prioritization affects which one is first indicated in the INT2VEC register.

Page 4-10 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

If Autovectoring is enabled, the INT2VEC byte replaces the contents of address 0x0045 in the
FX2's program memory. This causes the FX2 to automatically vector to a different address for
each USB interrupt source. This mechanism is explained in detail in Section 4.5. "USB-Interrupt
Autovectors."

Due to the OR gate in Figure 4-1, assertion of any of the individual USB interrupt sources sets the
FX2's “main” USB Interrupt request bit (EXIF.4). This main USB interrupt is enabled by setting
EIE.O to 1.

To clear the main USB interrupt request, firmware clears the EXIF.4 bit to 0.

After servicing a USB interrupt, FX2 firmware clears the individual USB source’s IRQ bit by setting
it to 1. If any other USB interrupts are pending, the act of clearing the IRQ bit causes the FX2 to
generate another pulse for the highest-priority pending interrupt. If more than one is pending, each
is serviced in the priority order shown in Figur e4-1, starting with SUDAV (priority 00) as the high-
est priority, and ending with EP8ISOERR (priority 31) as the lowest.

#
The main USB interrupt request is cleared by clearing the EXIF.4 bit to 0; each individual USB
interrupt is cleared by setting its IRQ bit to 1.

Important

It is important in any USB Interrupt Service Routine (ISR) to clear the main USB Interrupt
before clearing the individual USB interrupt request latch. This is because as soon as the
individual USB interrupt is cleared, any pending USB interrupt will immediately try to gener-
ate another main USB Interrupt. If the main USB IRQ bit has not been previously cleared, the
pending interrupt will be lost.

Chapter 4. Interrupts Page 4-11

EZ-USB FX2 Technical Reference Manual

Figure 4-2 illustrates a typical USB ISR for endpoint 2-IN.

USB | SR push dps
push dpl
push dph
push dpl1
push dphl
push acc

mov a, EXIF ; FIRST clear the USB (I NT2) interrupt request
clr acc.4
mov EXIF, a ; Note: EXIF reg is not bit-addressable

mov dptr, #USBERRI RQ ; now clear the USB interrupt request
mov a, #10000000b ; use EP8I SOERR as exanpl e
movx @iptr, a

; (service the interrupt here)

pop acc
pop dphl
pop dpl1l
pop dph
pop dpl
pop dps
reti

Figure 4-2. The Order of Clearing Interrupt Requests is Important

The registers associated with the individual USB interrupt sources are described in Chapter 15,
"Registers" and Section 8.6, "CPU Control of FX2 Endpoints". Each interrupt source has an
enable (IE) and a request (IRQ) bit. Firmware sets the IE bit to 1 to enable the interrupt. The FX2
sets an IRQ bit to 1 to request an interrupt, and the firmware clears an IRQ bit by writing a “1” to it.

4.4.2.1 SUTOK, SUDAV Interrupts

<«—SETUP Stage———»

S D C

E g E g All 8bytes || R A

T ollollc T|| Setup C ©

u Rl s A Data 1 K

P 0 6

Token Packet Data Packet IS Pkt
SUTOK SUDAV
Interrupt Interrupt

Figure 4-3. SUTOK and SUDAYV Interrupts

Page 4-12 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

SUTOK and SUDAV are supplied to the FX2 by CONTROL endpoint zero. The first portion of a
USB CONTROL transfer is the SETUP stage shown in Figure 4-3 (a full CONTROL transfer is
shown in Figure 2-1). When the FX2 decodes a SETUP packet, it asserts the SUTOK (SETUP
Token) Interrupt Request. After the FX2 has received the eight bytes error-free and copied them
into the eight internal registers at SETUPDAT, it asserts the SUDAV Interrupt Request.

Firmware responds to the SUDAV Interrupt by reading the eight SETUP data bytes in order to
decode the USB request (Chapter 2, "Endpoint Zero").

The SUTOK Interrupt is provided to give advance warning that the eight register bytes at
SETUPDAT are about to be overwritten. It is useful for debug and diagnostic purposes.

4.4.2.2 SOF Interrupt

[
R
c
5

Token Pkt

Figure 4-4. A Start Of Frame (SOF) Packet

A USB Start-of-Frame Interrupt Request is asserted when the host sends a Start of Frame (SOF)
packet. SOFs occur once per millisecond in full-speed (12 Mbits/sec) mode, and once every 125
microseconds in high-speed (480 Mbits/sec) mode.

When the FX2 receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figu re4-
4) into the USBFRAMEH:L registers and asserts the SOF Interrupt Request. All isochronous end-
point data is generally serviced via the SOF Interrupt.

4.4.2.3 Suspend Interrupt

If the FX2 detects a “suspend” condition from the host, it asserts the SUSP (Suspend) Interrupt
Request. A full description of Suspend-Resume signaling appears in Chapter 6, "Power Manage-
ment".

4.4.2.4 USB RESET Interrupt

The USB host signals a bus reset by driving both D+ and D- low for at least 10 ms. When the FX2
detects the onset of USB bus reset, it asserts the URES Interrupt Request.

4.4.2.5 HISPEED Interrupt

This interrupt is asserted when the host grants high-speed (480 Mbps) access to the FX2.

4.4.2.6 EPOACK Interrupt

This interrupt is asserted when the FX2 has acknowledged the STATUS stage of a CONTROL
transfer on endpoint 0.

Chapter 4. Interrupts Page 4-13

EZ-USB FX2 Technical Reference Manual

4.4.2.7 Endpoint Interrupts

These interrupts are asserted when an endpoint requires service.

For an OUT endpoint, the interrupt request signifies that OUT data has been sent from the host,
validated by the FX2, and is in the endpoint buffer memory.

For an IN endpoint, the interrupt request signifies that the data previously loaded by the FX2 into
the IN endpoint buffer has been read and validated by the host, making the IN endpoint buffer
ready to accept new data.

Table 4-11. Endpoint Interrupts

EPO-IN EPO-IN ready to be loaded with data (BUSY bit 1-to-0)
EPO-OUT | EPO-OUT has received USB data (BUSY bit 1-to-0)
EP1-IN EP1-IN ready to be loaded with data (BUSY bit 1-to-0)
EP1-OUT |EP1-OUT has received USB data (BUSY bit 1-to-0)

EP2 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EP4 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EP6 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)
EP8 IN: Buffer available (Empty Flag 1-to-0)

OUT: Buffer has received USB data (Empty Flag 0-to-1)

4.4.2.8 In-Bulk-NAK (IBN) Interrupt

When the host sends an IN token to any IN endpoint which does not have data to send, the FX2
automatically NAKs the IN token and asserts this interrupt.

4.4.2.9 EPXPING Interrupt

These interrupts are active only during high speed (480 Mbits/sec) operation.

USB 2.0 improves the USB 1.1 bus bandwidth utilization by implementing a PING-NAK mecha-
nism for OUT transfers. When the host wishes to send OUT data to an endpoint, it first sends a
PING token to see if the endpoint is ready (i.e. if it has an empty buffer). If a buffer is not available,
the FX2 returns a NAK handshake. PING-NAK transactions continue to occur until an OUT buffer
is available, at which time the FX2 answers a PING with an ACK handshake and the host sends
the OUT data to the endpoint.

The EPXPING interrupt is asserted when the host PINGs an endpoint and the FX2 responds with
a NAK because no endpoint buffer memory is available.

Page 4-14 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

This interrupt is asserted when the USB error-limit counter has exceeded the preset error limit
threshold. See Section 8.6.3.3 for full details.

4.4.2.10 ERRLIMIT Interrupt

4.4.2.11 EPXISOERR Interrupt

These interrupts are asserted when an ISO data PID is missing or arrives out of sequence, or
when an ISO packet is dropped because no buffer space is available (to receive an OUT packet)
or no data is available to be sent (from an IN buffer).

4.5 USB-Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time
which normally would be required to identify the individual USB interrupt source, the FX2 provides
a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the
FX2 pushes the program counter onto its stack then jumps to address 0x0043, where it expects to
find a “jump” instruction to the USB Interrupt service routine.

The FX2 jump instruction is encoded as follows:

Table 4-12. FX2 JUMP Instruction

Address | Op-Code Hex Value

0x0043 LIMP 0x02
0x0044 AddrH OxHH
0x0045 AddrL OxLL

If Autovectoring is enabled (AV2EN=1 in the INTSETUP register), the FX2 substitutes its INT2VEC
byte (see Table 4-10) for the byte at address 0x0045. Therefore, if the high byte (“page”) of a jump-
table address is preloaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045
will direct the jump to the correct address out of the 27 addresses within the page.

As shown in Table 4-13, the jump table contains a series of jump instructions, one for each individ-
ual USB Interrupt source’s ISR.

Chapter 4. Interrupts Page 4-15

EZ-USB FX2 Technical Reference Manual

Table 4-13. A Typical USB-Interrupt Jump Table

Table Offset Instruction
0x00 LIMP SUDAV_ISR
0x04 LIMP SOF_ISR
0x08 LIMP SUTOK_ISR
0x0C LIJIMP SUSPEND_ISR
0x10 LIMP USBRESET_ISR
0x14 LIJMP HISPEED_ISR
0x18 LIMP EPOACK_ISR
0x1C LIMP SPARE_ISR
0x20 LIJMP EPOIN _ISR
0x24 LIJMP EPOOUT_ISR
0x28 LIJMP EP1IN _ISR
0x2C LIJIMP EP10OUT_ISR
0x30 LIMP EP2_ISR
0x34 LIMP EP4_ISR
0x38 LIJMP EP6_ISR
0x3C LIMP EP8_ISR
0x40 LIMP IBN_ISR
0x44 LIMP SPARE_ISR
0x48 LIMP EPOPING_ISR
0x4C LIMP EP1PING_ISR
0x50 LIMP EP2PING_ISR
0x54 LIMP EP4PING_ISR
0x58 LIMP EP6PING_ISR
0x5C LIMP EP8PING_ISR
0x60 LIMP ERRLIMIT_ISR
0x64 LIMP SPARE_ISR
0x68 LIMP SPARE_ISR
0x6C LIMP SPARE_ISR
0x70 LIMP EP2ISOERR_ISR
Ox74 LIMP EP2ISOERR_ISR
0x78 LIMP EP2ISOERR_ISR
0x7C LIMP EP2ISOERR_ISR

Page 4-16 EZ-USB FX2 Technical Reference Manual v2.1

4.5.1 USB Autovector Coding

To employ autovectoring for the USB interrupt:

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

1. Insert a jump instruction at 0x0043 to a table of jump instructions to the various USB interrupt
service routines. Make sure the jump table starts on a 0x0100-byte page boundary.

2. Code the jump table with jump instructions to each individual USB interrupt service routine.
This table has two important requirements, arising from the format of the INT2VEC Byte (zero-
based, with the 2 LSBs set to 0):

* It must begin on a page boundary (address 0xnn00)

e The jump instructions must be four bytes apart.

3. The interrupt service routines can be placed anywhere in memory.
4. Write initialization code to enable the USB interrupt (INT2) and Autovectoring.

0x0043
0x0044
0x0045

INT2VEC

USB Interrupt
Vector

LIMP

04

2C
1

A

Automatically

2C

0x0400

0x042C LIMP EP2_ISR

copied by FX2

0x042D
0x042E

USB_Jmp_Table:

01

19

0x0119

Figure 4-5. The USB Autovector Mechanism in Action

EP2_ISR:

Figure 4-5 illustrates an ISR that services endpoint 2. When endpoint 2 requires service, the FX2
asserts the USB interrupt request, vectoring to location 0x0043.

The jump instruction at this location, which was originally coded as “LIJMP 0400”, becomes “LIMP
042C” because the FX2 automatically inserts 2C, the INT2VEC value for EP2 (Table 4-13).

The FX2 jumps to 0x042C, where it executes the jump instruction to the EP2 ISR, arbitrarily
located for this example at address 0x0119.

Once the FX2 vectors to 0x0043, initiation of the endpoint-specific ISR takes only eight instruction

cycles.

Chapter 4. Interrupts

Page 4-17

EZ-USB FX2 Technical Reference Manual

4.6 12C-Compatible Bus Interrupt

12C-
Compatible
e 1 ofs S ER

RD or WR Interrupt

]
I2DAT register R R EXIF.5(rd)

I2C-Compatible Bus

Interrupt Request EXIF.5(0)

12CS | rprr STOP | LASTRD ID1 IDO BERR ACK DONE
OXE678
I2DAT D7 D6 D5 D4 D3 D2 D1 DO
OXE679

Figure 4-6. 12C-Compatible Bus Interrupt-Enable Bits and Registers

Chapter 13, "Input/Output” describes the interface to the FX2's 12C-Compatible Bus controller. The
FX2 uses two registers, 12CS (Control and Status) and I2DAT (Data), to transfer data over the bus.

An I2C-Compatible Bus Interrupt is asserted whenever one of the following occurs:

» The DONE Bit (12CS.0) makes a zero-to-one transition, signalling that the bus controller is
ready for another command.
* The STOP bit (12CS.6) makes a one-to-zero transition.

To enable the “Done” interrupt source, set EIE.1 to 1; to additionally enable the “Stop” interrupt
source, set STOPIE to 1. If both interrupts are enabled, the interrupt source may be determined by
checking the DONE and STOP Bits in the 12CS register.

To reset the Interrupt Request, write a zero to EXIF.5. Any firmware read or write to the I2DAT or
I2CS register also automatically clears the Interrupt Request.

NG
While the I2C-Compatible Bus controller is generating the “stop” condition, it ignores accesses to
the 12CS and I2DAT registers. Firmware should therefore check the STOP Bit for zero before writ-

ing new data to 12CS or 12DAT.

Page 4-18 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

4.7 FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF
interrupt is shared among 14 individual FIFO/GPIF sources.

The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4-14 shows the
priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

Table 4-14. Individual FIFO/GPIF Interrupt Sources

INT4VEC
Priority Value Source Notes
1 80 EP2PF Endpoint 2 Programmable Flag
2 84 EP4PF Endpoint 4 Programmable Flag
3 88 EP6PF Endpoint 6 Programmable Flag
4 8C EP8PF Endpoint 8 Programmable Flag
5 90 EP2EF Endpoint 2 Empty Flag
6 94 EP4EF Endpoint 4 Empty Flag
7 98 EPGEF Endpoint 6 Empty Flag
8 9C EPSEF Endpoint 8 Empty Flag
9 AO EP2FF Endpoint 2 Full Flag
10 A4 EP4FF Endpoint 4 Full Flag
11 A8 EP6FF Endpoint 6 Full Flag
12 AC EP8FF Endpoint 8 Full Flag
13 BO GPIFDONE | GPIF Operation Complete

(See Chapter 10, "General Programmable
Interface (GPIF)")

14 B4 GPIFWF GPIF Waveform
(See Chapter 10, "General Programmable
Interface (GPIF)")

When FIFO/GPIF interrupt sources are asserted, the FX2 prioritizes them and constructs an
Autovector, which appears in the INT4VEC register; 0 is the highest priority, 14 is the lowest. If two
FIFO/GPIF interrupts occur simultaneously, the prioritization affects which one is first indicated in
the INT4VEC register. If Autovectoring is enabled, the INT4VEC byte replaces the contents of
address 0x0055 in the FX2’'s program memory. This causes the FX2 to automatically vector to a
different address for each FIFO/GPIF interrupt source. This mechanism is explained in detail in
Section 4.8 "FIFO/GPIF-Interrupt Autovectors".

Chapter 4. Interrupts Page 4-19

EZ-USB FX2 Technical Reference Manual

Important

It is important in any FIFO/GPIF Interrupt Service Routine (ISR) to clear the main INT4 Inter-
rupt before clearing the individual FIFO/GPIF interrupt request latch. This is because as
soon as the individual FIFO/GPIF interrupt is cleared, any pending FIFO/GPIF interrupt will
immediately try to generate another main FIFO/GPIF Interrupt. If the main INT4 IRQ bit has
not been previously cleared, the pending interrupt will be lost.

The registers associated with the individual FIFO/GPIF interrupt sources are described in Chapter
15, "Registers" and Section 8.6, "CPU Control of FX2 Endpoints". Each interrupt source has an
enable (IE) and a request (IRQ) bit. Firmware sets the IE bit to 1 to enable the interrupt. The FX2
sets an IRQ bit to 1 to request an interrupt, and the firmware clears an IRQ bit by setting it to 1.

NG
The main FIFO/GPIF interrupt request is cleared by clearing the EXIF.6 bit to 0; each individual
FIFO/GPIF interrupt is cleared by setting its IRQ bit to 1.

4.8 FIFO/GPIF-Interrupt Autovectors

The main FIFO/GPIF interrupt is shared by 14 interrupt sources.To save the code and processing
time which normally would be required to sort out the individual FIFO/GPIF interrupt source, the
FX2 provides a second level of interrupt vectoring, called Autovectoring. When a FIFO/GPIF inter-
rupt is asserted, the FX2 pushes the program counter onto its stack then jumps to address
0x0053, where it expects to find a “jump” instruction to the FIFO/GPIF Interrupt service routine.

The FX2 jump instruction is encoded as follows:

Table 4-15. FX2 JUMP Instruction

Address | Op-Code | Hex Value

0x0053 LIMP 0x02
0x0054 | AddrH OxHH
0x0055 AddrL OxLL

If Autovectoring is enabled (AV4EN=L1 in the INTSETUP register), the FX2 substitutes its
INT4VEC byte (see Table 4-14) for the byte at address 0x0055. Therefore, if the high byte (“page”)
of a jump-table address is preloaded at location 0x0054, the automatically-inserted INT4VEC byte
at 0x0055 will direct the jump to the correct address out of the 14 addresses within the page.

Page 4-20 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

As shown in Table 4-16, the jump table contains a series of jump instructions, one for each individ-
ual FIFO/GPIF Interrupt source’s ISR.

Table 4-16. A Typical FIFO/GPIF-Interrupt Jump Table

Table Offset Instruction
0x80 LIMP EP2PF_ISR
0x84 LIMP EP4PF_ISR
0x88 LIMP EP6PF_ISR
0x8C LIMP EP8PF_ISR
0x90 LIMP EP2EF_ISR
0x94 LIMP EP4EF_ISR
0x98 LIMP EP6EF_ISR
0x9C LIJMP EP8EF_ISR
OxAO0 LIMP EP2FF_ISR
0xA4 LIMP EP4FF_ISR
OxA8 LIMP EP6FF_ISR
OxAC LIMP EP8FF_ISR
0xBO LIMP GPIFDONE_ISR
0xB4 LIMP GPIFWF_ISR

4.8.1 FIFO/GPIF Autovector Coding

To employ autovectoring for the FIFO/GPIF interrupt, perform the following steps:

1.

Insert a jump instruction at 0x0053 to a table of jump instructions to the various FIFO/GPIF
interrupt service routines. Make sure the jump table starts at a 0x0100-byte page boundary
plus 0x80.

Code the jump table with jump instructions to each individual FIFO/GPIF interrupt service rou-
tine. This table has two important requirements, arising from the format of the INT4VEC byte
(Ox80-based, with the 2 LSBs set to 0); the two requirements are the following:

* It must begin on a page boundary + 0x80 (address 0xnn80).
e The jump instructions must be four bytes apatrt.

Place the interrupt service routines anywhere in memory.
Write initialization code to enable the FIFO/GPIF interrupt (INT4) and Autovectoring.

Chapter 4. Interrupts Page 4-21

EZ-USB FX2 Technical Reference Manual

FIFO/GPIF
Interrupt
Vector FIFO_GPIF_Jmp_Table:
0x0053 LIMP 0x0480
0x0054 04
0x0055 A
X \ EP4FF_ISR
Automatically
copied by FX2 0x04A4 LIMP EP4FF_ISR
/ 0x0321,
INT4VEC A | Ox04AS5 01
Ox04A6 19

Figure 4-7. The FIFO/GPIF Autovector Mechanism in Action

Figure 4-7 illustrates an ISR that services EP4’s Full Flag. When EP4 goes full, the FX2 asserts
the FIFO/GPIF interrupt request, vectoring to location 0x0053.

The jump instruction at this location, which was originally coded as “LIJMP 0480", becomes “LIMP
04A4” because the FX2 automatically inserts A4, the INT4VEC value for EP4AFF (Table 4-13).

The FX2 jumps to 0x04A4, where it executes the jump instruction to the EP4FF ISR, arbitrarily
located for this example at address 0x0321.

Once the FX2 vectors to 0x0053, initiation of the endpoint-specific ISR takes only eight instruction
cycles.

Page 4-22 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 5

Memory

5.1 Introduction

Memory organization in the FX2 is similar, but not identical, to that of the standard 8051. There are
three distinct memory areas: Internal Data Memory, External Data Memory, and External Program
Memory. As will be explained below, “External” memory is hot necessarily external to the FX2 chip.

5.2 Internal Data RAM

As shown in Figure 5-1, the FX2's Internal Data RAM is divided into three distinct regions: the
“Lower 128", the “Upper 128", and “SFR Space”. The Lower 128 and Upper 128 are general-pur-
pose RAM; the SFR Space contains FX2 control and status registers.

Lower 128
0x7
General-
Purpose
0x30
Ox2H 78 N
Register Bit-Addressable
Bank Select RAM
(PSW.4:3)
0x2 0 e 0
M gf(ll': RO-R7 (Bank 3)
10 2% RO-RY (Bank 2)
0 8§8F RO-R7 (Bank 1)
0x0
0 0x0 RO-R7 (Bank 0)

OxFF

0x80
Ox7F

0x00

Indirect addressing only

" OxFF
Upper 128 SFR Space
N 0x80
Lower 128 Direct addressing

AN

Direct or indirect addressing

only

Chapter 5. Memory

Figure 5-1. Internal Data RAM Organization

Page 5-1

EZ-USB FX2 Technical Reference Manual

5.2.1 The Lower 128

The Lower 128 occupies Internal Data RAM locations 0x00-0x7F. All of the Lower 128 may be
accessed as general-purpose RAM, using either direct or indirect addressing (for more information
on the FX2 addressing modes, see Chapter 12 "Instruction Set").

Two segments of the Lower 128 may additionally be accessed in other ways.

» Locations 0x00-0x1F comprise four banks of 8 registers each, numbered RO through R7.
The current bank is selected via the “register-select” bits (RS1:RS0) in the PSW special-
function register; code which references registers RO-R7 will access them only in the cur-
rently-selected bank.

» Locations 0x20-0x2F are bit-addressable. Each of the 128 bits in this segment may be
individually addressed, either by its bit address (0x00 to Ox7F) or by reference to the byte
which contains it (0x20.0 to 0x2F.7).

5.2.2 The Upper 128

The Upper 128 occupies Internal Data RAM locations 0x80-0xFF; all 128 bytes may be accessed
as general-purpose RAM, but only by using indirect addressing (for more information on the FX2
addressing modes, see Chapter 12 "Instruction Set").

Since the FX2's stack is internally accessed using indirect addressing, it's a good idea to put the
stack in the Upper 128; this frees the more-efficiently-accessed Lower 128 for General-Purpose
use.

5.2.3 SFR (Special Function Register) Space

The SFR Space, like the Upper 128, is accessed at Internal Data RAM locations 0x80-0OxFF. The
FX2 keeps SFR Space separate from the Upper 128 by using different addressing modes to
access the two regions: SFRs may only be accessed using direct addressing, and the Upper 128
may only be accessed using indirect addressing.

The SFR Space contains FX2 control and status registers; an overview is in Section 11.12, "Spe-
cial Function Registers (SFR)", and a full description of all the SFRs is in Chapter 15 "Registers".

The sixteen SFRs at locations 0x80, 0x88,, 0xFO0, 0xF8 are bit-addressable. Each of the 128

bits in these registers may be individually addressed, either by its bit address (0x80 to OxFF) or by
reference to the byte which contains it (e.g., 0x80.0, 0xC8.7, etc.).

Page 5-2 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

5.3 External Program Memory and External Data Memory

The standard 8051 employs a Harvard architecture for its External memory; the program and data
memories are physically separate. The FX2 uses a modified version of this memory model; off-
chip program and data memories are separate, but the on-chip program and data memories are
unified in a Von Neumann architecture. This allows the FX2's on-chip RAM to be loaded from an
external source (USB or EEPROM, see Chapter 3 "Enumeration and ReNumeration™"), then
used as program memory.

Standard 8051

The standard 8051 has separate address spaces for program and data memory; it can address
64K of read-only program memory at addresses 0x0000-OxFFFF, and another 64K of read/write
data memory, also at addresses 0x0000-OxFFFF. The standard 8051 keeps the two memory
spaces separate by using different bus signals to access them; the read strobe for program mem-
ory is PSEN (Program Store Enable), and the read and write strobes for data memory are RD and
WR. The 8051 generates PSEN strobes for instruction fetches and for the MOVC (move code
memory into the accumulator) instruction; it generates RD and WR strobes for all data-memory
accesses. In a standard 8051 application, an external 64K ROM chip (enabled by the 8051's
PSEN signal) might be used for program memory and an external 64K RAM chip (enabled by the
8051's RD and WR signals) might be used for data memory.

In the standard 8051, all program memory is read-only.
FX2

The FX2 has 8K of on-chip RAM (the “Main RAM”) at addresses 0x0000-0x1FFF, and 512 bytes of
on-chip RAM (the “Scratch RAM”) at addresses OXxE0Q00-OXE1FFF. Although this RAM is physically
located inside the chip, it's addressed by FX2 firmware as External memory, just as though it were
in an external RAM chip.

Some systems use only this on-chip RAM, with no off-chip memory. In those systems, the RD and
PSEN strobes are automatically combined for accesses to addresses below 0x2000, so the Main
RAM is accessible as both data and program memory. The RD and PSEN strobes are not com-
bined for the Scratch RAM; Scratch RAM is accessible as data memory only.

Although it's technically accurate to say that the Main RAM data memory is writable while the Main
RAM program memory is not, it's a distinction without a difference. The Main RAM is accessible
both as program memory and data memory, so writing to Main RAM data memory is equivalent to
writing to Main RAM program memory at the same address.

The Scratch RAM is never accessible as program memory.

The FX2 also reserves 7.5K (OxE200-0xFFFF) of the data-memory address space for control/sta-
tus registers and endpoint buffers (see Section 5.6, "On-Chip Data Memory at OXEO00-OxFFFF").

Chapter 5. Memory Page 5-3

EZ-USB FX2 Technical Reference Manual

Note that only the data-memory space is reserved; program memory in the 0XEO00-OxFFFF range
is not reserved, so the 128-pin FX2 can access off-chip program memory in that range.

5.3.1 56- and 100-pin FX2

The 56- and 100-pin FX2 chips have no facility for adding off-chip program or data memory. There-
fore, the Main RAM must serve as both program and data memory. To accomplish this, the FX2
reads the Main RAM using the logical OR of the PSEN and RD strobes. It is the responsibility of
the system designer to ensure that the program- and data-memory spaces do not overlap; with
most C compilers, this is done by using linker directives that place the code and data modules into
separate areas.

5.3.2 128-pin FX2

It is possible to add off-chip program and data memory to the 128-pin FX2; the organization of that
memory depends on the state of the EA (External Access) pin.

EA=0

The Main RAM is accessible both as program and data memory, just as in the 56- and 100-pin
FX2.

To avoid conflict with the Main RAM, the pins which control access to off-chip memory (the RD,
WR, CS, OE, and PSEN pins) are inactive whenever the FX2 accesses addresses 0x0000-
Ox1FFF. This allows a 64K memory chip (data and/or program) to be added without requiring addi-
tional external logic to inhibit access to the lower 8K of that chip. Note that the PSEN and RD sig-
nals are available on separate pins, so the program and data spaces outside the FX2 are not

combined as they are inside the FX2.

When code in the range 0x0000-0x1FFF is fetched from the on-chip RAM, the PSEN pin is not
asserted; when code is fetched from program memory in the range 0x2000-OxFFFF, the PSEN pin
is asserted.

EA=1
All program memory is off-chip; all on-chip RAM, including the Main RAM, is data memory only.
The FX2 reads all on-chip RAM using only the RD strobe; the combining of RD and PSEN is dis-
abled, so the on-chip RAM becomes data memory only. All program memory is off-chip; accesses
to the lower 8K of off-chip program memory are not inhibited.
Any code fetch will assert the PSEN pin.
After a power-on-reset, the FX2 immediately begins executing code at address 0x0000 in the off-

chip program memory, rather than waiting for an EEPROM load or USB code download to com-
plete (see Chapter 7 "Resets" for a full description of the FX2 resets).

Page 5-4 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

5.4 FX2 Memory Maps

Inside FX2 Outside FX2
data memory code memory
[——— - — 1
FFFF 7.5 Kilobytes | |
USB regs and | (OK to populate |
4K EP buffers | unused data |
Data (RD,WR) I memory here-- I
E200 I RD/WR strobes |
0.5 Kbytes RAM | arenotactive) |
EQoo | Data (RD.WR)* [56 KBytes
External
Code
48 KBytes Memory
External (PSEN)
Data
Memory
(RD,WR)
1FFF | | | |
8 Kilobytes | (OK to populate I | (OK to populate I
RAI\)I/ | unused data I |unused program |
Code & Data I memory here-- | | memory here-- |
(PSEN,RD,WR)* I RD/WR strobes | I PSEN strobe is |
Y | arenotactive) | I not active) I
0000 e I e I

EA=0
* SUDPTR, USB upload/download, EEPROM boot access

Figure 5-2. FX2 External Program/Data Memory Map, EA=0

Figure 5-2 illustrates the memory map of the 128-pin FX2 with off-chip program and data memory.

WA
The 56- and 100-pin FX2 chips cannot access off-chip memory; the entire memory map for those
chips is illustrated on the left side of Figur e5-2, in the “Inside FX2” column.

Chapter 5. Memory Page 5-5

EZ-USB FX2 Technical Reference Manual

On-chip FX2 memory consists of three RAM regions:

e 0x0000-0x1FFF (Main RAM)

* OxEOO00-OXE1FF (Scratch RAM)

* 0OxE200-OxFFFF (Registers/Buffers)
The 8K “Main RAM” occupies code-memory (PSEN) and data-memory (RD/WR) addresses
0x0000-0x1FFF.
The 512-byte “Scratch RAM” occupies data-memory (RD/WR) addresses OXEQ00-OXE1FF.

7.5K of control/status registers and endpoint buffers occupy data-memory (RD/WR) addresses
OXE200-0xFFFF.

When off-chip memory is connected to the FX2, it fills in the gaps not occupied by on-chip FX2
RAM. Since the lower 8K of memory is occupied by on-chip program/data memory and the upper
8K is occupied by on-chip data memory, the off-chip memory cannot be active in these regions.
Nevertheless, it's still safe to populate those regions with off-chip memory, as the following para-
graphs explain.

The middle column of Figure 5-2 indicates FX2 data memory (activated by the RD and WR
strobes) and the right-most column indicates FX2 code memory (activated by PSEN).

The “middle” 48K of the data-memory space may be filled with off-chip memory, since it does not
conflict with the upper and lower 8K of on-chip FX2 data memory. To allow a 64K RAM to be con-
nected to the FX2, the FX2 gates its RD and WR strobes to exclude the top and bottom 8K for off-
chip accesses. Therefore, a 64K RAM can be connected to FX2, and the top and bottom 8K of it
are automatically disabled.

Likewise, when a 64K code memory (PSEN strobe) is attached to the FX2 (when EA = 0), the
lower 8K is automatically excluded for off-chip code fetches, avoiding conflict with the on-chip
code memory inside FX2.

#
The asterisks in Figures 5-2 and 5-3 indicate memory regions that may be accessed using three
special FX2 resources:

e Setup Data Pointer (see Section 8.7)
« Upload or download via USB (see Section 3.8)

» Code boot from an 12C-compatible EEPROM (see Section 13.5 and Section 3.4)

Page 5-6 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Inside FX2 Outside FX2
data memory code memory
——————— 1
FFFF 7.5 Kilobytes |r |
USB regs and | (OK to populate I
4K EP buffers | unused data I
Data (RD,WR) memory here-- I
E200 : RD/WR strobes |
0.5 Kbytes RAM | arenotactive) |
E000 Data (RD,WR) I
48 KBytes 64 KBytes
External External
Data Code
Memory Memory
(RD,WR) (PSEN)
1FFF | |
8 Kilobytes | (OuKnLZS;Z:LZte :
Est’\:\ : memory here-- |
I RD/WR strobes |
(RD,WR)*)
| are not active) |
0000 P |

EA=1
* SUDPTR, USB upload/download, EEPROM boot access

Figure 5-3. FX2 External Program/Data Memory Map, EA=1

Figure 5-3 illustrates the 128-pin FX2 memory map when the EA pin is tied high. The only differ-
ence from Figure 5-2 is that the Main RAM is data memory only, instead of combined code/data
memory. This allows an off-chip code memory to contain all of the FX2 firmware. In this configura-
tion, the FX2 can begin executing code from off-chip memory immediately after power-on-reset.

NG
FX2 code execution begins at address 0x0000, where the reset vector is located.

Off-chip data memory is partially disabled just as in Figure 5-2, ensuring that off-chip data memory
does not conflict with on-chip data RAM.

Chapter 5. Memory Page 5-7

EZ-USB FX2 Technical Reference Manual

#

Be careful to check the access time of external Flash or other code memory in this mode. The FX2
can stretch its RD and WR strobes to compensate for slow data memories, but it does not have
the capability to stretch its PSEN signal to allow for slow code memories. At 48 MHz, an external
code-memory chip must have an access time of approximately 44 ns or shorter (access-time
parameters are given in the CY7C68013 data sheet).

5.5 *“Von-Neumannizing” Off-Chip Program and Data Memory

The 128-pin FX2 package provides a 16-bit address bus, an 8-bit data bus, and memory control
signals PSEN, RD, and WR. These signals are used to expand the FX2's External Program and/or
External Data memory.

As described in the previous section, the FX2 gates the RD and WR signals to exclude selection
of off-chip data memory in the range occupied by the on-chip memory. The PSEN signal is also
available on a pin for connection to off-chip code memory.

In some systems, it may be desirable to combine off-chip program and data memotry, just as the
FX2 combines its on-chip program/data Main RAM. These systems must logically OR the PSEN
and RD strobes to qualify the off-chip memory’s chip enable and output enable signals. To save
the external logic which would normally be needed, FX2 provides two additional control signals,
CS and OE. The equations for these active-low signals are:

CS =RD + WR + PSEN
OE = RD + PSEN

Because the RD, WR, and PSEN signals are already qualified by the addresses allocated to off-
chip memory, the added strobes CS and OE strobes are active only when the FX2 accesses off-
chip memory.

Page 5-8 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

5.6 On-Chip Data Memory at OXxEOQOO-OxFFFF

FFFF
EP8 Buffer (1024)

FCO00
FBFF
F800 EP6 Buffer (1024)
F7FF
F400 EP4 Buffer (1024)
F3FF
F000 EP2 Buffer (1024)
EFFF

RESERVED (2048)
E800
A EP1IN (64
E7CO ()

E7BF
E780
E77F
E740
E73F
E700
EGFF
E600
E5FF
E480
EA7F
E400
E3FF

EP10UT (64)

EPO IN/OUT (64)

UNAVAILABLE (64)

Registers (256)

RESERVED (384)

GPIF waveforms (128)

RESERVED (512)
E200
E1FF

8051 data (512)
E000

Figure 5-4. On-Chip Data Memory at OXEOO0-OxFFFF

Figure 5-4 shows the memory map for on-chip data RAM at OXEQ00-OxFFFF.

512 bytes of Scratch RAM is available at 0OXEOOO-OXE1FF. This is data RAM only; code cannot be
run from it. The 128 bytes at 0XE400-OxE47F hold the four waveform descriptors for the GPIF,
described in Chapter 10. The shaded area from OXE600-OXE6FF contains FX2 control and status
registers.

Memory blocks 0xE200-0xE3FF, 0XE480-0xE5FF, OxE700-0xE73F, and OXE800-OxEFFF) are
reserved; they must not be used for data storage.

The remaining RAM contains the endpoint buffers. These buffers are accessible either as addres-

sable data RAM (via the ‘MOVX’ instruction) or as a FIFO (via the Autopointer, described in Sec-
tion 8.8).

Chapter 5. Memory Page 5-9

EZ-USB FX2 Technical Reference Manual

Page 5-10 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 6 Power Management

6.1

Introduction

The USB host can suspend a device to put it into a power-down mode. When the USB signals a
SUSPEND operation, the FX2 goes through a sequence of steps to allow the firmware first to turn
off external power-consuming subsystems, and then to enter a low-power mode by turning off the
FX2's oscillator. Once suspended, the FX2 is awakened either by resumption of USB bus activity
or by assertion of one of its two WAKEUP pins (provided that they're enabled). This chapter
describes the suspend-resume mechanism.

It is important to understand the distinction between ‘suspend’, ‘resume’, ‘idle’, and ‘wakeup’.

SUSPEND is a request—indicated by a 3-millisecond “J” state on the USB bus—from the
USB host/hub to the device. This request is usually sent by the host when it enters a low-
power “suspended” state. USB devices are required to enter a low power state in response
to this request.

The FX2 also provides a register called SUSPEND; writing any value to it will allow the
FX2 to enter the suspended state even when a SUSPEND condition doesn't exist on the
bus.

RESUME is a signal from the device to the host, requesting that the host be taken out of its
low-power “suspended” mode. RESUME can be signaled only by a USB device that has
reported (via its Configuration Descriptor) that it supports this “remote wakeup” feature,
and only if the host has enabled remote wakeup from that device.

Idle is an FX2 low-power state. FX2 firmware initiates this mode by setting bit 0 of the
PCON (Power Control) register.To meet the stringent USB suspend current specification,
the FX2's oscillator must be stopped; after the PCON.0 bit is set, the oscillator will stop if a)
a SUSPEND condition exists on the bus or the SUSPEND register has been written to,
and b) the two WAKEUP pins are either disabled or false. The FX2 exits the Idle state
when it receives a Wakeup Interrupt.

Wakeup is the mechanism which restarts the FX2 oscillator and asserts an interrupt to
force the FX2 to exit the Idle state and resume code execution. The FX2 recognizes three
wakeup sources: one from the USB itself (when bus activity resumes) and two from device
pins (WAKEUP and WU2).

Chapter 6. Power Management Page 6-1

EZ-USB FX2 Technical Reference Manual

The FX2 enters and exits its Idle state independent of USB activity; in other words, the FX2 can
enter the Idle state at any time, even when not connected to USB. The Idle state is “hooked into”
the USB SUSPEND-RESUME mechanism using interrupts. An interrupt is automatically gener-
ated when the USB goes inactive for 3 milliseconds; FX2 firmware may respond to that interrupt
by entering the Idle state to reduce power. If the FX2 is in the Idle state, a Wakeup Interrupt is
generated when one of the three Wakeup sources is asserted; the FX2 responds to that interrupt
by exiting the Idle state and resuming code execution.

Once the FX2 is awake, its firmware may send a USB RESUME request by setting the SIGR-
SUME bit in the USBCS register (at 0OXE680). Before sending the RESUME request, the device
must have: a) reported remote-wakeup capability in its Configuration Descriptor, and b) been
given permission (via a Set Feature-Remote Wakeup request from the host) to use that remote-
wakeup capability. To be compliant with the USB Specification, firmware should wait 5 millisec-
onds after the wakeup interrupt, set the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

Figure 6-1 illustrates the FX2 logic that implements USB suspend and resume. These operations
are explained in the next sections.

24 MHz

DPEN D
USB RESUME
WUEN
W:)Z:UPOL :) START —p>

WAKEUP pin WU2EN STOP —p Oscillator
Wu2pPOL
WU2 pin v
PLL
Restart
v
Delay
divider
[»[CLKOUT
v
——PCON.0—]
Signal
8051
—"RESUME" INT =P —» Resume
(USBCS.0)
Resume
Suspend

USB A A
No USB activity "SUSPEND"
for 3 msec.
Interrupt

Write any value to
SUSPEND register
(0XE681)

Figure 6-1. Suspend-Resume Control

Page 6-2 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

6.2 USB Suspend

24 MHz
___STOP—p Oscillator
PLL
divider
[CLKOUT
— PCON.0—
Signal
8051 |—» Resume
(USBCS.0)

A
. usB
No USB activity "SUSPEND"
for 3 msec.
Interrupt

Write any value to
SUSPEND register
(OxE681)

Figure 6-2. USB Suspend sequence

A USB device recognizes a SUSPEND request as three milliseconds of the bus-idle (“J") state.
When the FX2 detects this condition, it asserts the USB interrupt (INT2) and the SUSPEND inter-
rupt autovector (vector #3).

If the CPU is in reset when a SUSPEND condition is detected on the bus, the FX2 will automati-
cally turn off its oscillators (and keep the CPU in reset) until an enabled wakeup source is
asserted.

NG
The bus-idle (“J") state is not equivalent to the disconnected-from-USB state; the “J” state means
that the voltage on D+ is higher than that on D-.

Chapter 6. Power Management Page 6-3

EZ-USB FX2 Technical Reference Manual

FX2 firmware responds to the SUSPEND interrupt by taking the following actions:

1. Perform any necessary housekeeping such as shutting off external power-consuming devices.
2. Set bit 0 of the PCON register.

These actions put the FX2 into a low power ‘suspend’ state, as required by the USB Specification.

6.2.1 SUSPEND Register

FX2 firmware can force the chip into its low-power mode at any time, even without detecting a
3-millisecond “J” state on the USB bus. This “unconditional suspend” functionality is useful in
applications which require the FX2 to enter its low-power mode even while disconnected from the
USB bus.

To force the FX2 unconditionally to enter its low-power mode, firmware simply writes any value to
the SUSPEND register (at 0OXE681) before setting the PCON.O0 bit.

6.3 Wakeup/Resume

24 MHz

DPEN I:I
USB RESUME
WUEN
ﬁD:D START > Oscillator
WAKEUP pin WU2EN
Wu2POL
WU2 pin

Restart
Delay

divider

» CLKOUT

Signal
> Resume
(USBCS.0)

—"WAKEUP" INT =p 8051

Figure 6-3. FX2 Wakeup/Resume sequence

Page 6-4 EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

Once in the low-power mode, there are three ways to wake up the FX2:

» USB activity on the FX2's DPLUS pin
» Assertion of the WAKEUP pin
« Assertion of the WU2 (“Wakeup 27) pin

These three wakeup sources may be individually enabled by setting the DPEN, WUEN, and
WUZ2EN bits in the Wakeup Control register.

WAKEUPCS Wakeup Control & Status E682
b7 b6 b5 b4 b3 b2 bl b0
Wu2 WU WU2POL | WUPOL 0 DPEN WUZ2EN WUEN
R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 0 1

The polarities of the wakeup pins are set using the WUPOL and WU2POL bits; 0 is active low and
1 is active high.

Three bits in the WAKEUP register enable the three wakeup sources. DPEN stands for “DPLUS
Enable” (DPLUS is one of the USB data lines; the other is DMINUS).

WUEN (Wakeup Enable) enables the WAKEUP pin, and WU2EN (Wakeup 2 Enable) enables the
WU2 pin.

When the FX2 chip detects activity on DPLUS while DPEN is true, or a false-to-true transition on
WAKEUP or WU2 while WUEN or WUZ2EN is true, it asserts the “wakeup” interrupt.

The status bits WU and WU?2 indicate which of the wakeup pins caused the wakeup event. Assert-
ing the wakeup pin (according to its programmed polarity) sets the corresponding bit. If the wakeup
was caused by resumption of USB DPLUS activity, neither of these bits is set, leading to the con-

clusion that the third source, a USB bus reset, caused the wakeup event. FX2 firmware clears the
WU and WU?2 flags by writing “1” to them.

6.3.1 Wakeup Interrupt

When a wakeup event occurs, the FX2 restarts its oscillator and, after the PLL stabilizes, it gener-
ates an interrupt request. This applies whether or not the FX2 is connected to the USB. The
Wakeup Interrupt is a dedicated interrupt, and is not shared by USBINT like most of the other indi-
vidual USB interrupts.

The Wakeup Interrupt vector is at 0x33, and has the highest interrupt priority. It is enabled by
EICON.5, and its IRQ flag is at EICON.4 (EICON is SFR 0xD8).

Chapter 6. Power Management Page 6-5

EZ-USB FX2 Technical Reference Manual

The Wakeup Interrupt Service Routine clears the interrupt request flag (using the ‘bit clear’ instruc-
tion, i.e. ‘clr EICON.4’), and then executes a ‘reti’ (return from interrupt) instruction. This causes
the FX2 to continue program execution at the instruction following the one that set PCON.O to ini-
tiate the power-down operation.

About the Wakeup Interrupt

The FX2 enters its idle state when it sets PCON.O to 1. Although a standard 8051 exits the
idle state when any interrupt occurs, the FX2 supports only the Wakeup Interrupt to exit the
idle state.

A
If PCON.O is set when no Suspend condition exists (i.e., the USB is not signaling “Suspend”, and
firmware hasn't written to the SUSPEND register), the Wakeup Interrupt will fire immediately.

6.4 USB Resume (Remote Wakeup)

USBCS USB Control and Status 7FD6
| b7 b6 b5 b4 b3 b2 bl bo |
I - - - SIGRSUMEI

Figure 6-4. USB Control and Status register

Firmware sets the SIGRSUME bit to send a remote-wakeup request to the host. To be compliant
with the USB Specification, the firmware should wait 5 milliseconds after the wakeup interrupt, set
the SIGRSUME bit, wait 10-15 milliseconds, then clear it.

NG
Holding either WAKEUP pin in its active state (as determined by the programmed polarity) inhibits
the FX2 chip from turning off its oscillator in order to enter the ‘suspend’ state.

The Default USB Device does not support remote wakeup. This fact is reported at enumeration
time in byte 7 of the built-in Configuration Descriptor (see Appendices A and B).

6.4.1 WU2 Pin

The WU2 function shares the general-purpose I/O pin PA3. Unlike other multi-purpose 1/0O pins
that use configuration registers (PORTACFG, PORTBCFG and PORTCCFG) to select alternate

Page 6-6 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

functions, the PA3 and WU2 functions are simultaneously active. However, the WU2 function has
no effect unless enabled (by setting the WUZ2EN bit to 1). If WU2 is used as a wakeup pin, make
sure to set PA3 as an input (OEA.3=0, the default state) to prevent PA3 from also driving the pin.

The dual nature of the PA3/WU2 pin allows the FX2 to enter the low-power mode, then periodically
awaken itself. This is done by connecting an RC network to the PA3/WU2 pin; if the WU2 pin is set
to the default polarity (active-high), the resistor is connected to 3.3V and the capacitor is con-
nected to ground.

The firmware then performs the following steps:

Set W2POL to 1 for active-high polarity on the WU2 pin.
Set WUZ2EN to 1 to enable Wakeup 2.
Enable the wakeup interrupt by setting EICON.5=1.

Set PA3 to 0, then set OEA.3 to 1. This enables the PA3 output and drives the PA3/WU2 pin to
ground, discharging the capacitor.

5. Set OEA.3to 0. This floats the PA3/WU2 pin, allowing the resistor to begin charging the
capacitor.

6. Write any value to the SUSPEND register, so the FX2 will unconditionally stop the oscillator
when the firmware sets PCON.O0.

7. Set PCON.O to 1. This commands the FX2 to enter the Idle state.

A owbdpR

After the capacitor charges to a logic high level, the wakeup interrupt triggers via the WU2 pin.

8. Inthe Wakeup interrupt service routine, clear EICON.4 (the wakeup interrupt request flag),
then execute a ‘reti’ instruction. This resumes program execution at the instruction following
the instruction in step 7.

9. At this point, the firmware can check for any tasks to perform; if none are required, it can then
re-enter the Idle state starting at step 4.

By selecting a long time constant for the RC network attached to the WU2 pin, the FX2 chip can
operate at extremely low average power, since the on/off (active/suspend) duty-cycle is very short.

Chapter 6. Power Management Page 6-7

EZ-USB FX2 Technical Reference Manual

Page 6-8 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 7 Resets

7.1 Introduction

The FX2 chip has two internal resets:
Power-On Reset (POR), controlled by the RESET pin, which puts the FX2 in a known

State.

CPU Reset, controlled by the FX2's USB Core logic. The CPU Reset is always asserted
(i.e., the CPU is always held in reset) while the FX2's RESET pin is asserted.

Additionally, the USB Specification defines a USB Bus Reset, which is a condition on the bus initi-
ated by the USB host in order to put every device’s USB functions in a known state.

This chapter describes the effects of these three resets.

RES
CPU
Vcc
CPUCS.0
(1 at PWR ON)
RESET RES
USB Core 12, 24,
/J; or 48
[USBBus | MHz
1 _Reset 1
XIN 48 MHz
24 £ . p 7172,
(— Oscillator —»{ PLL .
MHz —L or -4 v
XOUT CLKOUT

Figure 7-1. EZ-USB FX2 Resets

Chapter 7. Resets Page 7-1

EZ-USB FX2 Technical Reference Manual

7.2 Power-On Reset (POR)

An active-low input pin (RESET) resets the FX2 chip. Note that the term “Power-Qn Reset”
refers to a reset initiated either by application of power or by assertion of the RESET pin.

The RESET pin is normally connected to an external R-C network in order to ensure that, when
power is first applied, the FX2 is held in reset until the operating parameters (Vcc voltage, crystal
frequency, PLL frequency, etc.) stabilize. The recommended values for the R-C network are a 10K
resistor to Vcc and a 1 pF capacitor to GND (see Figure 7-1). External logic can force a POR at
any time by pulling the RESET pin low.

Whenever the RESET pin is asserted, the USB Core holds the CPU in reset.

The CLKOUT pin, crystal oscillator, and PLL are active as soon as power is applied. Once the
CPU is out of reset, firmware may clear a control bit (CLKOE, CPUCS.1) to inhibit the CLKOUT
output pin for EMI-sensitive applications that do not need this signal.

The CLKOUT signal is active while RESET is low. When RESET returns high, the activity on the
CLKOUT pin depends on whether or not the FX2 is in the low-power “suspend” state; if it is, CLK-
OUT stops. Resumption of USB bus activity or assertion of the WAKEUP or WUZ2 pin (if enabled)
restarts the CLKOUT signal.

The oscillator and PLL are unaffected by the state of the RESET pin.

Power-on default values for all FX2 register bits are shown in Chapter 15, "Registers". At power-
on reset:

» Endpoint data buffers and byte counts are uninitialized.

* The CPU clock speed is set to 12 MHz, the CPU is held in reset, and the CLKOUT pin is
active.

« All port pins are configured as general-purpose input pins.
« USB interrupts are disabled and USB interrupt requests are cleared.

« Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared. The FX2 will
NAK IN and OUT tokens while the CPU is reset.

» Endpoint toggle bits are cleared to 0.

« The RENUM bitis cleared to 0. This means that the Default USB Device, not the firmware,
will respond to USB device requests.

» The USB Function Address register is cleared to zero.
e The endpoints are configured for the Default USB Device.
e Interrupt autovectoring is turned off.

e Configuration Zero, Alternate Setting Zero is in effect.

Page 7-2 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

7.3 Releasing the CPU Reset

Register bit CPUCS.0 resets the CPU. This bit is set to 1 at power-on, initially holding the CPU in
reset. There are three ways that the CPUCS.0 bit can be cleared to 0, releasing the CPU from
reset:

« By the host, as the final step of a RAM download.

» Automatically, at the end of an EEPROM load (assuming the EEPROM is correctly pro-
grammed).

* Automatically, when external ROM is used (EA=1) and no “C0” or “C2" EEPROM is
present.

NG
FX2 firmware cannot put the CPU into reset by setting CPUCS.0 to 1; to the firmware, that bit is
read-only.

7.3.1 RAM Download

Once enumerated, the host can download code into the FX2 RAM using the “Firmware Load” ven-
dor request (Chapter 2, "Endpoint Zero"). The last packet loaded writes 0x00 to the CPUCS regis-
ter, which releases the CPU from reset.

7.3.2 EEPROM Load

Chapter 3, "Enumeration and ReNumeration™" describes the EEPROM boot loads in detail. At
power-on, the FX2 checks for the presence of an EEPROM on its 12C-compatible bus. If found, it
reads the first EEPROM byte. If it reads 0xC2 as the first byte, the FX2 downloads firmware from
the EEPROM into internal RAM. The last operation in a “C2” Load writes 0x00 to the CPUCS reg-
ister, which releases the CPU from reset.

After a “C2” Load, the FX2 sets the RENUM bit to 1, so the firmware will be responsible for
responding to USB device requests.

7.3.3 External ROM

The 128-pin FX2 can use off-chip program memory containing FX2 code and USB device descrip-
tors, which include the VID/DID/PID bytes. Because such a system does not require an 12C-com-
patible EEPROM to supply the VID/DID/PID, the FX2 automatically releases the CPU from reset
when:

» The EA pin is pulled high (indicating off-chip code memory), and

Chapter 7. Resets Page 7-3

EZ-USB FX2 Technical Reference Manual

* No “C0/C2" EEPROM is detected on the 12C-compatible bus.

Under these conditions, the FX2 also sets the RENUM bit to 1, so the firmware will be responsible
for responding to USB device requests.

7.4 CPU Reset Effects

The USB host may reset the CPU at any time by downloading the value 0x01 to the CPUCS regis-
ter. The host might do this, for example, in preparation for loading code overlays, effectively mag-
nifying the size of the internal FX2 RAM. For such applications, it is important to know the state of
the FX2 chip during and after a CPU reset. In this section, this particular reset is called a “CPU
Reset,” and should not be confused with the POR described in Section 7.2, "Power-On Reset
(POR)." This discussion applies only to the condition in which the FX2 chip is powered, and the
CPU is reset by the host setting the CPUCS.0 bit to 1.

The basic USB device configuration remains intact through a CPU reset. Endpoints keep their
configuration, the USB Function Address remains the same, and the I/O ports retain their configu-
rations and values. Stalled endpoints remain stalled, data toggles don’t change, and the RENUM
bit is unaffected. The only effects of a CPU reset are as follows:

« USB (INT2) interrupts are disabled, but pending interrupt requests remain pending.

* When the CPU comes out of reset, pending interrupts are kept pending, but disabled. This
gives the firmware writer the choice of acting on pre-reset USB events, or ignoring them
by clearing the pending interrupt(s) before enabling INT2.

* The breakpoint condition (BREAKPT.3) is cleared.

« While the CPU is in reset, the FX2 will enter the Suspend state automatically if a “sus-
pend” condition is detected on the bus.

7.5 USB Bus Reset

The host signals a USB Bus Reset by driving an SEQ state (both D+ and D- data lines low) for a
minimum of 10 ms. The FX2 senses this condition, requests the USB Interrupt (INT2), and sup-
plies the interrupt vector for a USB Reset. After a USB bus reset, the following occurs:

» Toggle bits are cleared to 0.
* The device address is reset to zero.

« If the Default USB Device is active, the USB configuration and alternate settings are reset
to zero.

» The FX2 will renegotiate with the host for high-speed (480 Mbps) mode.

Page 7-4 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Note that the RENUM bit is unchanged after a USB bus reset. Therefore, if a device has ReNu-
merated™ and loaded a new personality, it retains the new personality through a USB bus reset.

7.6 FX2 Disconnect

Although not strictly a “reset,” the disconnect-reconnect sequence used for ReNumeration™
affects the FX2 in ways similar to the other resets. When the FX2 simulates a disconnect-recon-
nect, the following occurs:

» Endpoint STALL bits are cleared.
« Data toggles are reset to 0.
* The Function Address is reset to zero.

» If the Default USB Device is active, the USB configuration and alternate settings are reset
to zero.

7.7 Reset Summary

Table 7-1. Effects of Various Resets on FX2 Resources (“—" means “no change”)

RESET Pin CPU Reset | USB Bus Reset | Disconnect

CPU Reset Reset n/a — —
IN Endpoints Unarm — — —
OUT Endpoints Unarm — — —
Breakpoint 0 0 — —
Stall Bits 0 — — 0
Interrupt Enables 0 0 — —
Interrupt Requests 0 — — —
CLKOUT Active — — —
CPU Clock Speed 12 MHz — — —
Data Toggles 0 — 0 0
Function Address 0 — 0 0
Default USB Device 0 — 0 0
Configuration

Default USB Device 0 — 0 0
Alternate Setting

RENUM Bit 0 — — —

Chapter 7. Resets Page 7-5

EZ-USB FX2 Technical Reference Manual

Page 7-6 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 8 Access to Endpoint Buffers

8.1 Introduction

USB data enters and exits FX2 via endpoint buffers. In order to keep up with the high-speed 480
megabit/second transfer rates, external logic usually reads and writes this data by direct connec-
tion to the endpoint FIFOs without any participation by the FX2's CPU.

NG
Chapter 9, "Slave FIFOs" and Chapter 10, "General Programmable Interface (GPIF)" give details
about how external logic directly connects to the large endpoint FIFOs.

When an application requires the CPU to process the data as it flows between external logic and
the USB — or when there is no external logic — firmware can access the endpoint buffers either as
blocks of RAM or (using a special auto-incrementing pointer) as a FIFO.

Even when external logic or the built-in General Programmable Interface (GPIF) is handling high-
bandwidth data transfers through the four large endpoint FIFOs without any CPU intervention, the
firmware has certain responsibilities:

» Configure the endpoints.
» Respond to host requests on CONTROL endpoint zero.
« Control and monitor GPIF activity.

» Handle all application-specific tasks using its USARTS, counter-timers, interrupts, 1/O pins,
etc.

8.2 FX2 Large and Small Endpoints

FX2 endpoint buffers are divided into “small” and “large” groups. EPO and EP1 are small, 64-byte
endpoints which are accessible only by the CPU; they can’t be connected directly to external logic.

EP2, EP4, EP6 and EP8 are large, configurable endpoints designed to meet the high-bandwidth
requirements of USB 2.0. Although data normally flows through the large endpoint buffers under

Chapter 8. Access to Endpoint Buffers Page 8-1

EZ-USB FX2 Technical Reference Manual

control of the FIFO interfaces described in Chapters 9 and 10, the CPU can access the large end-
points if necessary.

8.3 High-Speed and Full-Speed Differences

FX2 operates at both full speed (12 Mbps) and high speed (480 Mbps). The data-payload-size and
transfer-speed requirements differ between the two modes. FX2 architecture is optimized for high
speed transfers:

* Instead of many small endpoint buffers, FX2 provides a reduced number of large buffers.
» FX2 provides double, triple or quad buffering on its large endpoints (EP2, 4, 6, and 8).

* The CPU need not participate in high-bandwidth transfers. Instead, dedicated FX2 logic
and unified endpoint/interface FIFOs move data on and off the chip at USB 2.0 rates with-
out any CPU intervention.

FX2 endpoint buffers appear to have different sizes depending on whether the FX2 is operating at
full or high speed. This is due to the difference in maximum packet sizes allowed by the USB spec-
ification for the two modes, as illustrated by Table 8-1.

Table 8-1. Maximum Packet Sizes for USB 1.1 and 2.0

Transfer Type Max Packet Size
usB 1.1 USB 2.0

CONTROL (EPO only) 8,16,32,64 64

BULK 8,16,32,64 512
INTERRUPT 1-64 1-1024
ISOCHRONOUS 1-1023 1-1024

Although the EP2, EP4, EP6 and EP8 buffers are physically large, they appear as smaller buffers
when the FX2 is operating at full speed to account for the smaller maximum packet sizes.

When operating at high speed, firmware can configure the large endpoints’ size, type, and buffer-

ing; when operating at full speed, type and buffering are configurable but the maximum packet
size is always fixed at 64 bytes for the non-isochronous types.

Page 8-2 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

8.4 How the CPU Configures the Endpoints

Endpoints are configured via the six registers shown in Table 8-2.

Table 8-2. Endpoint Configuration Registers

Address Name Configurable Parameters
OxE610 EP1OUTCFG | valid, type (always OUT, 64 bytes, single-buffered)
OxE611 EP1INCFG valid, typel (always IN, 64 bytes, single-buffered)
O0XE612 EP2CFG valid, direction, type, size, buffering
OxE613 EPACFG valid, direction, type (always 512 double-buffered)
OxE614 EP6CFG valid, direction, type, size, buffering
OXE615 EP8CFG valid, direction, type (always 512 double-buffered)

Note 1: For EP1, “type” may be set to Interrupt or Bulk only.

A

Chapter 15 gives full bit-level details for all registers.

Endpoint 0 does not require a configuration register since it is fixed as valid, INJOUT, CONTROL,
64 bytes, single-buffered. EPO uses a single 64-byte buffer both for IN and OUT transfers. EP1
uses separate 64 byte buffers for IN and OUT transfers.

Endpoints 2, 4, 6 and 8 handle the high bandwidth USB 2.0 transfers. Endpoints EP2 and EP6 are
the most flexible endpoints, as they are configurable for size (512 or 1024 bytes) and depth of buff-
ering (double, triple, or quad). Endpoints EP4 and EP8 are fixed at 512 bytes, double-buffered.

The bits in these registers control the following:

* Valid. Set to 1 (default) to enable the endpoint. A non-valid endpoint does not respond to
host IN or OUT packets.

* Type. Two bits, TYPE1:0 (bits 5 and 4) set the endpoint type:

— 00 =invalid

01 = ISOCHRONOUS (EP2,4,6,8 only)

10 = BULK (default)
— 11 = INTERRUPT
» Direction. 1 =1IN, 0 = OUT.
- Buffering. EP2 and EP6 only. Two bits, BUF1:0 control the depth of buffering:

— 00 =quad

Chapter 8. Access to Endpoint Buffers Page 8-3

EZ-USB FX2 Technical Reference Manual

— 01 =invalid
— 10 =double (default)
— 11 =triple

“Buffering” refers to the number of RAM blocks available to the endpoint. With double buffering,
for example, USB data can fill or empty an endpoint buffer at the same time that another packet
from the same endpoint fills or empties from the external logic. This techniqgue maximizes perfor-
mance by saving each side, USB and external-logic interface, from waiting for the other side. Mul-
tiple buffering is most effective when the providing and consuming rates are comparable but
bursty (as is the case with USB and many other interfaces, such as disk drives). Assigning more
RAM blocks (triple and quad buffering) provides more “smoothing” of the bursty data rates. A sim-
ple way to determine the appropriate buffering depth is to start with the minimum, then increase it
until no NAKs appear on the USB side and no wait states appear on the interface side.

8.5 CPU Access to FX2 Endpoint Data

Endpoint data is visible to the CPU at the addresses shown in Table 8-3. Whenever the application
calls for endpoint buffers smaller than the physical buffer sizes shown in Tabl e8-3, the CPU
accesses the endpoint data starting from the lowest address in the buffer. For example, if EP2 has
a reported MaxPacketSize of 512 bytes, the CPU accesses the data in the lower portion of the
EP2 buffer (i.e., from 0xFO0O0 to OxF1FF). Similarly, if the FX2 is operating in full speed mode
(which dictates a maximum Bulk packet size of only 64 bytes), only the lower 64 bytes of the end-
point (i.e., 0OxFO00-0xFO3F for EP2) will be used for Bulk data.

Table 8-3. Endpoint Buffers in RAM Space

Name Address Size (bytes)
EPOBUF OXE740-OXE77F 64
EP1OUTBUF OxE780-0XE7BF 64
EP1INBUF OXE7CO-OxE7FF 64
EP2FIFOBUF 0xF000-OxF3FF 1024
EP4FIFOBUF 0xF400-0OxF5FF 512
EP6FIFOBUF 0xF800-0xFBFF 1024
EP8FIFOBUF 0xFCO00-0xFDFF 512

NG
EPOBUEF is for the (optional) data stage of a CONTROL transfer. The eight bytes of data from the
CONTROL packet appear in a separate FX2 RAM buffer called SETUPDAT, at OXE6B8-0XE6BF.

The CPU can only access the “active” buffer of a multiple-buffered endpoint. In other words, firm-
ware must treat a quad-buffered 512-byte endpoint as being only 512 bytes wide, even though the
guad-buffered endpoint actually occupies 2048 bytes of RAM. Also, when EP2 and EP6 are con-
figured such that EP4 and/or EP8 are unavailable, the firmware must never attempt to access the
buffers corresponding to those unavailable endpoints.

Page 8-4 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

For example, if EP2 is configured for triple-buffered 1024-byte operation, the firmware should
access EP2 only at 0XxFO00-0xF3FF. The firmware should not access the EP4 or EP6 buffers in
this configuration, since they don't exist (the RAM space which they would normally occupy is used
to implement the EP2 triple-buffering).

8.6 CPU Control of FX2 Endpoints

From the CPU’s point of view, the “small” and “large” endpoints operate slightly differently, due to
the multiple-packet buffering scheme used by the large endpoints.

The CPU uses internal registers to control the flow of endpoint data. Since the small endpoints
EPO and EP1 are programmed differently than the large endpoints EP2, EP4, EP6, and EPS8,
these registers fall into three categories:

» Registers that apply to the small endpoints (EPO, EP1IN, and EP10UT)
» Registers that apply to the large endpoints (EP2, EP4, EP6, and EP8)

* Reqgisters that apply to both sets of endpoints

8.6.1 Registers That Control EPO, EP1IN, and EP1OUT

Table 8-4. Registers that control EPO and EP1

Address Name Function
OXE6AO0 EPOCS EPO HSNAK, Busy, Stall
OXE68A EPOBCH EPO Byte Count (MSB)
OxE68B EPOBCL EPO Byte Count (LSB)
OXE65C USBIE EPO Interrupt Enables
OxXE65D USBIRQ EPO Interrupt Requests
SFR 0xBA EPOL1STAT Endpoint 0 and 1 Status
OXE6A1 EP10OUTCS EP10OUT Busy, Stall
OXE68D EP10OUTBC EP10OUT Byte Count
OXEBA2 EP1INCS EP1IN Busy, Stall
OXE68F EP1INBC EP1IN Byte Count

8.6.1.1 EPOCS

Firmware uses this register to coordinate CONTROL transfers over endpoint 0. The EPOCS regis-

ter contains three bits: HSNAK, BUSY and STALL.

Chapter 8. Access to Endpoint Buffers

EZ-USB FX2 Technical Reference Manual

HSNAK

HSNAK is automatically set to 1 whenever the SETUP token of a CONTROL transfer arrives. The
FX2 logic automatically NAKs the STATUS (handshake) stage of the CONTROL transfer until the
firmware clears the HSNAK bit by writing “1” to it. This mechanism gives the firmware a chance to
hold off subsequent transfers until it completes the actions required by the CONTROL transfer.

NG

Firmware must clear the HSNAK bit after servicing every CONTROL transfer.
BUSY

The read-only BUSY bhit is relevant only for the data stage of a CONTROL transfer. BUSY=1 indi-
cates that the endpoint is currently being serviced by USB, so firmware should not access the end-
point data.

BUSY is automatically cleared to 0 whenever the SETUP token of a CONTROL transfer arrives.
The BUSY bit is set to 1 under different conditions for IN and OUT transfers.

For IN transfers, FX2 logic will NAK all INO tokens until the firmware has “armed” EPO for IN trans-
fers by writing to the EPOBCH:L Byte Count register, which sets BUSY=1 to indicate that firmware
should not access the data. Once the endpoint data is sent and acknowledged, BUSY is automat-
ically cleared to 0 and the EPOIN interrupt request bit is asserted. After BUSY is automatically
cleared to 0, the firmware may refill the EPOIN buffer.

For OUT transfers, FX2 logic will NAK all OUTO tokens until the firmware has “armed” EPO for
OUT transfers by writing any value to the EPOBCL register. BUSY is automatically set to 1 when
the firmware writes to EPOBCL, and BUSY is automatically cleared to O after the data has been
correctly received and ACK’d. When BUSY transitions to zero, the FX2 also generates an
EPOOUT interrupt request.

NG
The FX2's autovectored interrupt system automatically transfers control to the appropriate ISR

(Interrupt Service Routine) for the endpoint requiring service. Chapter 4, "Interrupts"” describes this
mechanism.

STALL

Set STALL=1 to instruct the FX2 to return the STALL response to a CONTROL transfer. This is
generally done when the firmware does not recognize an incoming USB request. According to the
USB spec, endpoint zero must always accept transfers, so STALL is automatically cleared to O
whenever a SETUP token arrives. If it's desired to stall a transfer and also clear HSNAK to 0 (by
writing a 1 to it), the firmware should set STALL=1 first, in order to ensure that the STALL bit is set
before the “acknowledge” phase of the CONTROL transfer can complete.

Page 8-6 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

These are the byte count registers for bytes sent as the optional data stage of a CONTROL trans-
fer. Although the EPO buffer is only 64 bytes wide, the byte count registers are 16 bits wide to allow
using the Setup Data Pointer to send USB IN data records that consist of multiple packets.

8.6.1.2 EPOBCH and EPOBCL

To use the Setup Data Pointer in its most-general mode, firmware clears the SUDPTR AUTO bit
and writes the address of a data block into the Setup Data Pointer, then loads the EPOBCH:L reg-
isters with the total number of bytes to transfer. The FX2 automatically transfers the entire block,
partitioning the data into MaxPacketSlze packets as necessary.

A

The Setup Data Pointer is the subject of Section 8.7.

For IN transfers without using the Setup Data Pointer, firmware loads data into EPOBUF, then
writes the number of bytes to transfer into EPOBCH and EPOBCL. The packet is armed for IN
transfer when the firmware writes to EPOBCL, so EPOBCH should always be loaded first. These
transfers are always 64 bytes or less, so EPOBCH must be loaded with 0 (and EPOBCL must be in
the range [0-64]). EPOBCH will hold that zero value until firmware overwrites it.

For EPO OUT transfers, the byte count registers indicate the number of bytes received in EPOBUF.
Byte counts for EPO OUT transfers are always 64 or fewer, so EPOBCH is always zero after an
OUT transfer. To re-arm the EPO buffer for a future OUT transfer, the firmware simply writes any
value to EPOBCL.

NG

The EPOBCH register must be initialized on reset, since its power-on-reset state is undefined.

8.6.1.3 USBIE, USBIRQ

Three interrupts — SUTOK, SUDAYV, and EPOACK — are used to manage CONTROL transfers
over endpoint zero. The individual enables for these three interrupt sources are in the USBIE reg-
ister, and the interrupt-request flags are in the USBIRQ register.

Each of the three interrupts signals the completion of a different stage of a CONTROL transfer.

e« SUTOK (“Setup Token") asserts when FX2 receives the SETUP token.

* SUDAV (“Setup Data Available”) asserts when FX2 logic has loaded the eight bytes from
the SETUP stage into the 8-byte buffer at SETUPDAT.

 EPOACK (“Endpoint Zero Acknowledge”) asserts when the handshake stage has com-
pleted.

The SUTOK interrupt is not normally used; it is provided for debug and diagnostic purposes. Firm-
ware generally services the CONTROL transfer by responding to the SUDAV interrupt, since this
interrupt fires only after the 8 setup bytes are available for examination in the SETUPDAT buffer.

Chapter 8. Access to Endpoint Buffers Page 8-7

EZ-USB FX2 Technical Reference Manual

8.6.1.4 EPO1STAT

The BUSY bits in EPOCS, EP10UTCS, and EP1INCS (described later in this chapter) are repli-
cated in this SFR; they are provided here in order to allow faster access (via the MOV instruction
rather than MOVX) to those bits.

Three status bits are provided in the EPO1STAT register; the status bits are the following:

* EPI1INBSY: 1= EP1IN is busy
+ EP1OUTBSY: 1 = EP10OUT is busy

« EPOBSY: 1= EPOis busy

8.6.1.5 EP10OUTCS

This register is used to coordinate BULK or INTERRUPT transfers over EP10OUT. The
EP10OUTCS register contains two bits, BUSY and STALL.

BUSY

This bit indicates when the firmware can read data from the Endpoint 1 OUT buffer. BUSY=1
means that the SIE “owns” the buffer, so firmware should not read (or write) the buffer. BUSY=0
means that the firmware may read from (or write to) the buffer. A 1-to-0 BUSY transition asserts
the EP1OUT interrupt request, signaling that new EP10OUT data is available.

BUSY is automatically cleared to O after the FX2 verifies the OUT data for accuracy and ACKs the
transfer. If a transmission error occurs, the FX2 automatically retries the transfer; error recovery is
transparent to the firmware.

Firmware arms the endpoint for OUT transfers by writing any value to the byte count register
EP10OUTBC, which automatically sets BUSY=1.

At power-on (or whenever a 0-to-1 transition occurs on the RESET pin), the BUSY bit is set to 0,
so the FX2 will NAK all EP10OUT transfers until the firmware arms EP1OUT by writing any value to
EP10OUTBC.

#

EZ-USB / EZ-USB FX Programmers:

The power-on state of all FX2 endpoint BUSY bhits is zero, in contrast to EZ-USB and EZ-USB FX,
whose BUSY bits for OUT endpoints default to one. This means that FX2 firmware must arm OUT

endpoints prior to using them (EZ-USB and EZ-USB FX accept one OUT transfer before the OUT
endpoint must be armed).

Page 8-8 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an EP10UT transfer. The FX2 will continue to respond to EP1OUT transfers with the
STALL PID until the firmware clears this bit.

STALL

8.6.1.6 EP10OUTBC

Firmware may read this 7-bit register to determine the number of bytes (0-64) in EP1IOUTBUF.
Firmware writes any value to EP1IOUTBC to arm an EP10OUT transfer.

8.6.1.7 EP1INCS

This register is used to coordinate BULK or INTERRUPT transfers over EP1IN. The EP1INCS reg-
ister contains two bits, BUSY and STALL.

BUSY

This bit indicates when the firmware can load data into the Endpoint 1 IN buffer. BUSY=1 means
that the SIE “owns” the buffer, so firmware should not write (or read) the buffer. BUSY=0 means
that the firmware may write data into (or read from) the buffer. A 1-to-0 BUSY transition asserts the
EP1IN interrupt request, signaling that the EP1IN buffer is free and ready to be loaded with new
data.

The firmware schedules an IN transfer by loading up to 64 bytes of data into EP1INBUF, then writ-
ing the byte count register EP1INBC with the number of bytes loaded (0-64). Writing the byte count
register automatically sets BUSY=1, indicating that the transfer over USB is pending. After the FX2
subsequently receives an IN token, sends the data, and successfully receives an ACK from the
host, BUSY is automatically cleared to O to indicate that the buffer is ready to accept more data.
This generates the EP1IN interrupt request, which signals that the buffer is again available.

At power-on, or whenever a 0-to-1 transition occurs on the RESET pin, the BUSY bit is set to 0,
meaning that the FX2 will NAK all EP1IN transfers until the firmware arms the endpoint by writing
the number of bytes to transfer into the EP1INBC register.

STALL

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in

response to an EP1IN transfer. The FX2 will continue to respond to EP1IN transfers with the
STALL PID until the firmware clears this bit.

8.6.1.8 EP1INBC

Firmware arms an IN transfer by loading this 7-bit register with the number of bytes (0-64) it has
previously loaded into EP1INBUF.

Chapter 8. Access to Endpoint Buffers Page 8-9

EZ-USB FX2 Technical Reference Manual

8.6.2 Registers That Control EP2, EP4, EP6, EP8

In order to achieve the high transfer bandwidths required by USB 2.0’s high-speed mode,
the FX2's CPU should not participate in transfers to and from the “large” endpoints.
Instead, those endpoints are usually connected directly to external logic (see Chapter 9 and Chap-
ter 10 for details).

Some applications, however, may require the firmware to have at least some small amount of con-
trol over the large endpoints. For those applications, the FX2 provides the registers shown in
Table 8-5.

Table 8-5. Registers that control EP2,EP4,EP6 and EP8

Address Name Function
SFR OxAA | EP2468STAT EP2, 4, 6, 8 empty/full
OxE648 INPKTEND force end of IN packet
0xE640 EP2ISOINPKTS ISO IN packets per frame or microframe
OXE6A3 EP2CS npak, full, empty, stall
0xE690 EP2BCH byte count (H)
0xE691 EP2BCL byte count (L)
OxE641 EP4ISOINPKTS ISO IN packets per frame or microframe
OXE6A4 EP4CS npak, full, empty, stall
O0xE694 EP4BCH byte count (H)
O0XE695 EP4BCL byte count (L)
OxE642 EP6ISOINPKTS ISO IN packets per frame/microframe
OXE6A5 EP6CS npak, full, empty, stall
O0xE698 EP6BCH byte count (H)
0xE699 EP6BCL byte count (L)
O0xE643 EP8ISOINPKTS ISO IN packets per frame/microframe
OXE6A6 EP8CS npak, full, empty, stall
OXE69C EP8BCH byte count (H)
OXE69D EP8BCL byte count (L)

8.6.2.1 EP2468STAT

The Endpoint Full and Endpoint Empty status bits (described below, in Section 8.6.2.3) are repli-
cated here in order to allow faster access by the firmware.

8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS

For high-speed (480 Mbps) ISOCHRONOUS IN endpoints only, the INPPF1 and INPPFO bits in
each of these registers determine the number of packets per microframe.

Page 8-10 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

These registers do not affect full-speed (12 Mbps) operation; full-speed isochronous transfers are
always fixed at one packet per frame.

Table 8-6. Isochronous IN Packets per Microframe, High-Speed Only

INPPF1 INPPFO Packets
0 0 Invalid
0 1 1
1 0 2
1 1 3

8.6.2.3 EP2CS, EPACS, EP6CS, EP8CS

Because the four large FX2 endpoints offer double, triple or quad buffering, a single BUSY bit is
not sufficient to convey the state of these endpoint buffers. Therefore, these endpoints have multi-
ple bits (NPAK, FULL, EMPTY) that can be inspected in order to determine the state of the end-
point buffers.

#
Multiple-buffered endpoint data must be read or written only at the buffer addresses given in
Table 8-3. The FX2 automatically switches the multiple buffers in and out of the single addressable

buffer space.
NPAK[2:0] (EP2, EP6) and NPAK[1:0] (EP4, EP8)
NPAK values have different interpretations for IN and OUT endpoints:

« OUT Endpoints: NPAK indicates the number of packets received over USB and ready for
the firmware to read.

« IN Endpoints: NPAK indicates the number of IN packets committed to USB (i.e., loaded
and armed for USB transfer), and thus unavailable to the firmware.

The NPAK fields differ in size to account for the depth of buffering available to the endpoints. Only
double buffering is available for EP4 and EP8 (two NPAK bits), and up to quad buffering is avail-
able for EP2 and EP6 (three NPAK bits).

FULL

While FULL and EMPTY apply to transfers in both directions, “FULL” is more useful for IN trans-
fers. It has the same meaning as “BUSY”, but applies to multiple-buffered IN endpoints. FULL=1
means that all buffers are committed to USB, and none are available for firmware access.

For IN transfers, FULL=1 means that all buffers are committed to USB, so firmware should not

load the endpoint buffer with any more data. When FULL=1, NPAK will hold 2, 3 or 4, depending
on the buffering depth (double, triple or quad). This indicates that all buffers are in use by the USB

Chapter 8. Access to Endpoint Buffers Page 8-11

EZ-USB FX2 Technical Reference Manual

transfer logic. As soon as one buffer becomes available, FULL will be cleared to 0 and NPAK will
decrement by one, indicating that all but one of the buffers are committed to USB (i.e., one is avail-
able for firmware access). As IN buffers are transferred over USB, NPAK decrements to indicate
the number still pending, until all are sent and NPAK=0.

EMPTY

While FULL and EMPTY apply to transfers in both directions, EMPTY is more useful for OUT
transfers. EMPTY=1 means that the buffers are empty; all received packets (2, 3, or 4, depending
on the buffering depth) have been serviced.

STALL

Firmware sets STALL=1 to instruct the FX2 to return the STALL PID (instead of ACK or NAK) in
response to an IN or OUT transfer. The FX2 will continue to respond to IN or OUT transfers with
the STALL PID until the firmware clears this bit.

8.6.2.4 EP2BCH:L, EP4ABCH:L, EP6BCH:L, EP8BCH:L

Endpoints EP2 and EP6 have 11-bit byte count registers to account for their maximum buffer sizes
of 1024 bytes. Endpoints EP4 and EP8 have 10-bit byte count registers to account for their maxi-
mum buffer sizes of 512 bytes.

The byte count registers function similarly to the EPO and EP1 byte count registers:

» For an IN transfer, the firmware loads the byte count registers to arm the endpoint (if
EPxBCH must be loaded, it should be loaded first, since the endpoint is armed when
EPxBCL is loaded).

e For an OUT transfer, the firmware reads the byte count registers to determine the number
of bytes in the buffer, then writes any value to the low byte count register to re-arm the
endpoint. See the “Skip” section, below, for further details.

SKIP

Normally, the CPU interface and outside-logic interface to the endpoint FIFOs are independent,
with separate sets of control bits for each interface. The AUTOOUT mode and the SKIP bit imple-
ment an “overlap” between these two domains. A brief introduction to the AUTOOUT mode is
given below; full details appear in Chapter 9, "Slave FIFOs."

When outside logic is connected to the interface FIFOs, the normal data flow is for the FX2 auto-
matically to commit OUT data packets to the outside interface FIFO as they become available.
This ensures an uninterrupted flow of OUT data from the host to the outside world, and preserves
the high bandwidth required by high speed mode.

In some cases, it may be desirable to insert a “hook” into this data flow, so that -- rather than the

FX2 automatically committing the packets to the outside interface as they are received over USB,
firmware receives an interrupt for every received OUT packet, then has the option to either commit

Page 8-12 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

the packet to the outside interface (the “output FIFO”), or discard it. The firmware might, for exam-
ple, inspect a packet header to make this skip/commit decision.

To enable this “hook”, the AUTOOUT bit is cleared to 0. If AUTOOUT = 0 and an OUT endpoint is
re-armed by writing to its low byte-count register, the actual value written to the register becomes
significant:

» If the SKIP bit (bit 7 of each EPXBCL register) is cleared to 0, the packet will be committed
to the output FIFO and thereby made available to the FIFO’s master (either external logic
or the internal GPIF).

» If the SKIP bit is set to 1, the just-received OUT packet will not be committed to the output
FIFO for transfer to the external logic; instead, the packet will be ignored, its buffer will
immediately be made available for the next OUT packet, and the output FIFO (and exter-
nal logic) will never even “know” that it arrived.

NG
The AUTOOUT bit appears in bit 4 of the Endpoint FIFO Configuration Registers EP2FIFOCFG,
EP4FIFOCFG, EP6FIFOCFG and EP8FIFOCFG.

8.6.3 Registers That Control All Endpoints

Table 8-7. Registers that control all endpoints

OxE658 IBNIE IN-BULK-NAK individual interrupt enables

OxE659 IBNIRQ IN-BULK-NAK individual interrupt requests
OXE65A NAKIE PING plus combined IBN-interrupt enable

OxE65B NAKIRQ PING plus combined IBN-interrupt request
OXE65C USBIE SUTOK, SUDAYV, EPO-ACK, SOF interrupt enables
OXE65D USBIRQ SUTOK, SUDAYV, EP0O-ACK, and SOF interrupt requests
OXE65E EPIE Endpoint interrupt enables

OXE65F EPIRQ Endpoint interrupt requests

OxE662 USBERRIE USB error interrupt enables

OxE663 USBERRIE USB error interrupt requests

OxE664 ERRCNTLIM USB error counter and limit

OxE665 CLRERRCNT Clear error count

OxE683 TOGCTL EPO/EP1 data toggle

Chapter 8. Access to Endpoint Buffers

Page 8-13

EZ-USB FX2 Technical Reference Manual

8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ

These registers contain the interrupt-enable and interrupt-request bits for two endpoint conditions,
IN-BULK-NAK and PING.

IN-BULK-NAK (IBN)

When the host requests an IN packet from an FX2 BULK endpoint, the endpoint NAKSs (returns the
NAK PID) until the endpoint buffer is filled with data and armed for transfer, at which point the FX2
answers the IN request with data.

Until the endpoint is armed, a flood of IN-NAKs can tie up bus bandwidth. Therefore, if the IN end-
points aren’t always kept full and armed, it may be useful to know when the host is “knocking at
the door”, requesting IN data.

The IN-BULK-NAK (IBN) interrupt provides this notification. The IBN interrupt fires whenever a
BULK endpoint NAKs an IN request. The IBNIE/IBNIRQ registers contain individual enable and
request bits per endpoint, and the NAKIE/NAKIRQ registers each contain a single bit, IBN, that is
the OR’d combination of the individual bits in IBNIE/IBNIRQ, respectively.

Firmware enables an interrupt by setting the enable bit high, and clears an interrupt request bit by
writing a 1 to it.

A

The FX2 interrupt system is described in detail in Chapter 4, "Interrupts."”

The IBNIE register contains an individual interrupt-enable bit for each endpoint: EPO, EP1, EP2,
EP4, EP6 and EP8. These bits are valid only if the endpoint is configured as a BULK or INTER-
RUPT endpoint. The IBNIRQ register similarly contains individual interrupt request bits for the 6
endpoints.

The IBN interrupt-service routine should take the following actions, in the order shown:

1. Clear the USB (INT2) interrupt request (by writing 0 to it).
2. Inspect the endpoint bits in IBNIRQ to determine which IN endpoint just NAK’d.

3. Take the required action (set a flag, arm the endpoint, etc.), then clear the individual IBN bit in
IBNIRQ for the serviced endpoint (by writing 1 to it).

4. Repeat steps (2) and (3) for any other endpoints that require IBN service, until all IRQ bits are
cleared.

5. Clear the IBN bit in the NAKIRQ register (by writing 1 to it).

A
Because the IBN bit represents the OR’d combination of the individual IBN interrupt requests, it
will not “fire” again until all individual IBN interrupt requests have been serviced and cleared.

Page 8-14 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

PING is the “flip side” of IBN; it's used for high speed (480 Mbits/sec) BULK OUT transfers.

PING

When operating at full speed (USB 1.1 spec), every host OUT transfer consists of the OUT PID
and the endpoint data, even if the endpoint is NAKing (not ready). While the endpoint is not ready,
the host repeatedly sends all the OUT data; if it's repeatedly NAK'd, bus bandwidth is wasted.

USB 2.0 introduced a new mechanism, called PING, that makes better use of bus bandwidth for
“unready” BULK OUT endpoints.

At high speed (USB 2.0 spec), the host can “ping” a BULK OUT endpoint to determine if it is ready
to accept data, holding off the OUT data transfer until it can actually be accepted. The host sends
a PING token, and the FX2 responds with:

* An ACK to indicate that there is space in the OUT endpoint buffer
A NAK to indicate “not ready, try later”.

The PING interrupts indicate that an FX2 BULK OUT endpoint returned a NAK in response to a
PING.

N

PING only applies at high speed (480 Mbits/sec).

Unlike the IBN bits, which are combined into a single IBN interrupt for all endpoints, each BULK
OUT endpoint has a separate interrupt (EPOPING, EP1PING, EP2PING,, EP8PING). Interrupt-
enables for the individual interrupts are in the NAKIE register; the interrupt-requests are in the
NAKIRQ register.

The interrupt service routine for the PING interrupts should perform the following steps, in the
order shown:

1. Clear the INT2 interrupt request.
2. Take the action for the requesting endpoint.
3. Clear the appropriate EPxPING bit for the endpoint.

8.6.3.2 EPIE, EPIRQ

These registers are used to manage interrupts from the FX2 endpoints. In general, an interrupt
request is asserted whenever the following occurs:

* An IN endpoint buffer becomes available for the CPU to load.

e An OUT endpoint has new data for the CPU to read.

Chapter 8. Access to Endpoint Buffers Page 8-15

EZ-USB FX2 Technical Reference Manual

For the small endpoints (EPO and EP1IN/OUT), these conditions are synonymous with the end-
point BUSY bit making a 1-to-0 transition (busy to not-busy). As with all FX2 interrupts, this one is
enabled by writing a “1” to its enable bit, and the interrupt flag by writing a “1” to it.

NG

Do not attempt to clear an IRQ bit by reading the IRQ register, ORing its contents with a bit mask
(e.g. 00010000), then writing the contents back to the register. Since a “1” clears an IRQ bit, this

clears all the asserted IRQ bits rather than just the desired one. Instead, simply write a single “1”

(e.g., 00010000) to the register.

8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT

These registers are used to monitor the “health” of the USB connection between the FX2 and the
host.

USBERRIE

This register contains the interrupt-enable bits for the “Isochronous Endpoint Error” interrupts and
the “USB Error Limit” interrupt.

An “Isochronous Endpoint Error” occurs when the FX2 detects a PID sequencing error for a high-
bandwidth, high-speed 1SO endpoint.

USBERRIRQ

This register contains the interrupt flags for the “Isochronous Endpoint Error” interrupts and the
“USB Error Limit” interrupt.

ERRCNTLIM

FX2 firmware sets the USB error limit to any value from 1 to 15 by writing that value to the lower
nibble of this register; when that many USB errors (CRC errors, Invalid PIDs, garbled packets,
etc.) have occurred, the “USB Error Limit” interrupt flag will be set. At power-on-reset, the error
limit defaults to 4 (0100 binary).

The upper nibble of this register contains the current USB error count.

CLRERRCNT

Writing any value to this register clears the error count in the upper nibble of ERRCNTLIM. The
lower nibble of ERRCNTLIM is not affected.

8.6.3.4 TOGCTL

As described in Chapter 1, "Introducing EZ-USB FX2" the host and device maintain a data toggle
bit, which is toggled between data packet transfers. There are certain times when the firmware
must reset an endpoint’s data toggle bit to O:

Page 8-16 EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

» After a configuration changes (i.e., after the host issues a Set Configuration request).

» After an interface’s alternate setting changes (i.e., after the host issues a Set Interface
request).

» After the host sends a Clear Feature - Endpoint Stall request to an endpoint.

For the first two, the firmware must clear the data toggle bits for all endpoints contained in the
affected interfaces. For the third, only one endpoint’s data toggle bit is cleared.

The TOGCTL register contains bits to set or clear an endpoint data toggle bit, as well as to read
the current state of a toggle bit.

#

At this writing, there is no known reason for firmware to set an endpoint toggle to “1". Also, since

the FX2 handles all data toggle management, normally there is no reason to know the state of a

data toggle. These capabilities are included in the TOGCTL register for completeness and debug

purposes.

TOGCTL Data Toggle Control E683
b7 b6 b5 b4 b3 b2 bl b0
Q s R 10 EP3 EP2 EP1 EPO
R R/W R/W R/W R/W R/W R/W R/W
X X X X X X X

A two-step process is employed to clear an endpoint data toggle bit to 0. First, writes the TOGCTL
register with an endpoint address (EP3:EPO) plus a direction bit (I0). Then, keeping the endpoint
and direction bits the same, write a “1” to the R (reset) bit. For example, to clear the data toggle for
EP6 configured as an “IN” endpoint, write the following values sequentially to TOGCTL:

« 00010110

+ 00110110

8.7 The Setup Data Pointer

The USB host sends device requests using CONTROL transfers over endpoint 0. Some requests
require the FX2 to return data over EP0. During enumeration, for example, the host issues Get
Descriptor requests that ask for the device’s capabilities and requirements. The returned data can
span many packets, so it must be partitioned into packet-sized blocks, then the blocks must be
sent at the appropriate times (i.e., when the EPO buffer becomes ready).

Chapter 8. Access to Endpoint Buffers Page 8-17

EZ-USB FX2 Technical Reference Manual

The Setup Data Pointer automates this process of returning IN data over EPO, simplifying the firm-
ware.

NG

For the Setup Data Pointer to work properly, EP0’'s MaxPacketSize must be set to 64.

Table 8-8 lists the registers which configure the Setup Data Pointer.

Table 8-8. Registers used to control the Setup Data Pointer

Address Register Name Function
OxE6B3 SUDPTRH High address
OxE6B4 SUDPTRL Low address
OXE6B5 SUDPTRCTL SDPAUTO bit

To send a block of data, the block’s starting address is loaded into SUDPTRH:L. The block length
must previously have been set; the method for accomplishing this depends on the state of the
SDPAUTO bit:

e SDPAUTO =0 (Manual Mode): Used for general-purpose block transfers. Firmware
writes the block length to EPOBCH:L.

e SDPAUTO =1 (Auto Mode): Used for sending Device, Configuration, String, Device
Qualifier, and Other Speed Configuration descriptors only. The block length is automati-
cally read from the “length” field of the descriptor itself; no explicit loading of EPOBCH:L is
necessary.

Writing to SUDPTRL starts the transfer; the FX2 automatically sends the entire block, packetizing
as necessary.

For example, to answer a Get Descriptor - Device request, firmware sets SDPAUTO = 1, then
loads the address of the device descriptor into SUDPTRH:L. The FX2 then automatically loads the
EPO data buffer with the required number of packets and transfers them to the host.

To command the FX2 to ACK the status (handshake) packet, the firmware clears the HSNAK bit
(by writing 1 to it) before starting the Setup Data Pointer transfer.

If the firmware needs to know when the transaction is complete (i.e., sent and acknowledged), it
can enable the EPOACK interrupt before starting the Setup Data Pointer transfer.

A

When SDPAUTO = 0, writing to EPOBCH:L only sets the block length; it does not arm the transfer
(the transfer is armed by writing to SUDPTRL). Therefore, before performing an EPO transfer
which does not use the Setup Data Pointer (i.e., one which is meant to be armed by writing to

EPOBCL), SDPAUTO must be setto 1.

Page 8-18 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

8.7.1 Transfer Length

When the host makes any EPOIN request, the FX2 respects the following two length fields:

» the requested number of bytes (from the last two bytes of the SETUP packet received
from the host)

« the available number of bytes, supplied either as a length field in the actual descriptor
(SDPAUTO=1) or in EPOBCH:L (SDPAUTO=0)

In accordance with the USB Specification, the FX2 sends the smaller of these two length fields.

8.7.2 Accessible Memory Spaces

The Setup Data Pointer can access data in either of two RAM spaces:

e On-chip Main RAM (8 KB at 0x0000-0x1FFF)
e On-chip Scratch RAM (512 bytes at OXEOO00-OxE1FF)

N

The Setup Data Pointer cannot be used to access off-chip memory at any address.

8.8 Autopointers

Endpoint data is available to the CPU in RAM buffers (see Table 8-3). In some cases, it is faster for
the firmware to access endpoint data as though it were in a FIFO register. The FX2 provides two
special data pointers, called “Autopointers”, that automatically increment after each byte transfer.
Using the Autopointers, firmware can access contiguous blocks of on- or off-chip data memory as
a FIFO.

Each Autopointer is controlled by a 16-bit address register (AUTOPTRNH:L), a data register (XAU-
TODATN), and a control bit (APTRnINC). An additional control bit, APTREN, enables both Auto-
pointers.

A read from (or write to) an Autopointer data register actually accesses the address pointed to by
the corresponding Autopointer address register, which increments on every data-register access.
To read or write a contiguous block of memory (for example, an endpoint buffer) using an Auto-
pointer, load the Autopointer’s address register with the starting address of the block, then repeat-
edly read or write the Autopointer’s data register.

The AUTOPTRnNH:L registers may be written or read at any time to determine the current Auto-
pointer address.

Chapter 8. Access to Endpoint Buffers Page 8-19

EZ-USB FX2 Technical Reference Manual

Most of the Autopointer registers are in SFR Space for quick access; the data registers are avail-
able only in External Data space.

Table 8-9. Registers that control the Autopointers

Address Register Name Function

SFR OxAF AUTOPTRSETUP Increment/freeze, off-chip access enable
SFR 0x9A AUTOPTR1H Address high

SFR 0x9B AUTOPTR1L Address low

OxE67B XAUTODAT1 Data

SFR 0x9D AUTOPTR2H Address high

SFR 0x9E AUTOPTR2L Address low

OxXE67C XAUTODAT2 Data

The Autopointers are configured using three bits in the AUTOPTRSETUP register: one bit
(APTREN) enables both autopointers, and two bits (one for each Autopointer, called APTR1INC
and APTR2INC, respectively) control whether or not the address increments for every Autodata

access.

Enabling the Autopointers has one side-effect: Any code access (an instruction fetch, for instance)
from addresses OXE67B and OXE67C will return the AUTODATA values, rather than the code-
memory values at these two addresses. This introduces a two-byte “hole” in the code memaory.

A

There is no two-byte hole in the data memory at OXE67B:E67C; the hole only appears in the pro-

gram memory.

Page 8-20

EZ-USB FX2 Technical Reference Manual v2.1

Chapter 9 Slave FIFOs

9.1 Introduction

Although some FX2-based devices may use the FX2's CPU to process USB data directly (see
Chapter 8 "Access to Endpoint Buffers"), most will use the FX2 simply as a conduit between the
USB and external data-processing logic (e.g., an ASIC or DSP, or the IDE controller on a hard disk
drive).

In devices with external data-processing logic, USB data flows between the host and that external
logic — usually without any participation by the FX2's CPU — through the FX2's internal endpoint
FIFOs. To the external logic, these endpoint FIFOs look like most others; they provide the usual
timing signals, handshake lines (full, empty, programmable-level), read and write strobes, output
enable, etc.

These FIFO signals must, of course, be controlled by a FIFO “master”. The FX2's General Pro-
grammable Interface (GPIF) can act as an internal master when the FX2 is connected to external
logic which doesn’t include a standard FIFO interface, or the FIFOs can be controlled by an exter-
nal master. While its FIFOs are controlled by an external master, the FX2 is said to be in “Slave
FIFO” mode.

Chapter 10, "General Programmable Interface (GPIF)," discusses the internal-master GPIF. This

chapter provides details on the interface — both hardware and software — between the FX2's
slave FIFOs and an external master.

Chapter 9. Slave FIFOs Page 9-1

EZ-USB FX2 Technical Reference Manual

9.2 Hardware

Figure 9-1 illustrates the four slave FIFOs. The figure shows the FIFOs operating in 16-bit mode,
although they can also be configured for 8-bit operation.

CPU Slave FIFOs Device Pins
FD[15:0]

30/48MHz

IFCLK 5 - 48MHz

where: x = y r
2,4,6,0r8 FLAGA
Slave FIFOs FLAGB

WORLDWIDE =1 FLAGC -

—

o EPXFIFOBUF FLAGD / SLCS#
Ll

EP2 SLOE

EPX-EF, FF, PF EP4
£P6 SLRD
@ EPXBCH:L | EP8 - SLWR

CPU
A
FIFOADRJ[1:0]
INPKTEND PKTEND

PORT I /0 o
—

Figure 9-1. Slave FIFOs’ Role in the FX2 System

Table 9-1 lists the registers associated with the slave-FIFO hardware. The registers are fully
described in Chapter 15, "Registers."

Table 9-1. Registers Associated with Slave FIFO Hardware

IFCONFIG EPXFIFOPFH/L
PINFLAGAB PORTACFG
PINFLAGCD INPKTEND
FIFORESET EPXFLAGIE
FIFOPINPOLAR EPXFLAGIRQ
EPxCFG EPxFIFOBCH:L
EPxFIFOCFG EPXFLAGS
EPXAUTOINLENH:L EPxBUF

Page 9-2 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

9.2.1 Slave FIFO Pins

The FX2 comes out of reset with its I/O pins configured in “Ports” mode, not “Slave FIFO” mode. To
configure the pins for Slave FIFO mode, the IFCFG1:0 bits in the IFCONFIG register must be set
to 11 (see Table 13-10, “IFCFG Selection of Port I/O Pin Functions" for details). When

IFCFG1:0 = 11, the Slave FIFO interface pins are presented to the external master, as shown in
Figure 9-2.

IFCLK

FLAGA

FLAGB

FLAGC

FX2 FLAGD /| SLCS# EXT.
Slave
Mode SLOE Master
0
- SLRD

SLRWR

PKTEND

FD[15:0]

FIFOADR[1:0]

Figure 9-2. FX2 Slave Mode Full-Featured Interface Pins

External logic accesses the FIFOs through an 8- or 16-bit-wide data bus, FD. The data bus is bidi-
rectional, with its output drivers controlled by the SLOE pin.

The FIFOADR][1:0] pins select which of the four FIFOs is connected to the FD bus.

In asynchronous mode (IFCONFIG.3 = 1), SLRD and SLWR are read and write strobes; in syn-
chronous mode (IFCONFIG.3 = 0), SLRD and SLWR are enables for the IFCLK clock pin.

IFCLK

SLRD SLRD
SLWR \ ; SLWR \ /

Asynchronous Synchronous

Figure 9-3. Asynchronous vs. Synchronous Timing Models

Chapter 9. Slave FIFOs Page 9-3

EZ-USB FX2 Technical Reference Manual

9.2.2 FIFO Data Bus (FD)

The FIFO data bus, FD[x:0], can be either 8 or 16 bits wide. The width is selected via each FIFO’s
WORDWIDE bit, (EPxFIFOCFG.0):

« WORDWIDE=0: 8-bit mode. FD[7:0] replaces Port B. See Figure 9-4.

« WORDWIDE=1: 16-bhit mode. FD[15:8] replaces Port D and FD[7:0] replaces Port B. See
Figure 9-5.

At power-on reset, the FIFO data bus defaults to 16-bit mode (WORDWIDE = 1) for all FIFOs.

In either mode, the FIFOADR[1:0] pins select which of the four FIFOs is internally connected to the
FD pins.

NG
If all of the FIFOs are configured for 8-bit mode, Port D remains available for use as general-pur-

pose I/O. If any FIFO is configured for 16-bit mode, Port D is unavailable for use as general-pur-
pose /O regardless of which FIFO is currently selected via the FIFOADRJ[1:0] pins.

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

5-48MHz

FIFOADRI[1:0]

A 4

FLAGA

FLAGB
EP2FIFOBUF EP2 FLAGC >
EP4FIFOBUF O | EP4 FLAGD/SLCS#
EP6FIFOBUF EP6 < >
EP8FIFOBUF EP8 SLOE

SLRD
SLWR
PKTEND

FD[7:0] >

Figure 9-4. 8-bit Mode Slave FIFOs, WORDWIDE=0

Page 9-4 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK

5-48MHz

FIFOADRI[1:0]

FLAGA

FLAGB
EP2FIFOBUF | EP2 | FLAGC >
EP4FIFOBUF EP4 FLAGD/SLCS#
EP6FIFOBUF g EP6 < >
EP8FIFOBUF EP8 SLOE
SLRD

SLWR
PKTEND

FD[15:0] >

Figure 9-5. 16-bit Mode Slave FIFOs, WORDWIDE=1

9.2.3 Interface Clock (IFCLK)

The slave FIFO interface can be clocked from either an internal or an external source. The FX2’s
internal clock source can be configured to run at either 30 or 48 MHz, and it can optionally be out-
put on the IFCLK pin. If the FX2 is configured to use an external clock source, the IFCLK pin can
be driven at any frequency between 5 MHz and 48 MHz. On power-on reset, the FX2 defaults to
the internal source at 48 MHz, normal polarity, with the IFCLK output disabled. See Figur €9-6.

IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit
has no effect when IFCONFIG.7 = 0.

IFCONFIG.5 is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit has
no effect when IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (whether it's internal or external): 0 = normal,
1 =inverted. IFCLK inversion can make it easier to interface the FX2 with certain external circuitry;
Figure 9-7, for example, demonstrates the use of IFCLK inversion in order to ensure a long-
enough setup time for reading the FX2's FIFO flags.

N

When IFCLK is configured as an input, the minimum frequency that can be applied to it is 5 MHz.

Chapter 9. Slave FIFOs Page 9-5

EZ-USB FX2 Technical Reference Manual

IFCFG.6
IFCFG.4 IFCFG.5

30 MHz — %}
48 MHz — 1 0

>o—1 |

. IFCLK
IFCFG.7 Pin
IFCFG.4
Internal 1
IFCLK <—ri 0 <]

Signal 1/O<]7

Figure 9-6. IFCLK Configuration

Internal IFCLK Signal ﬂ ﬂ
Inverted IFCLK Output ‘ ‘ ﬂ
FIFO Flag
FX2 Master
Asserts Samples
Flag ki Flag

Figure 9-7. Satisfying Setup Timing by Inverting the IFCLK Output

9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)

Four pins — FLAGA, FLAGB, FLAGC, and FLAGD — report the status of the FX2's FIFOs; in
addition to the usual “FIFO full” and “FIFO empty” signals, there is also a signal which indicates
that a FIFO has filled to a user-programmable level. The external master typically monitors the
“empty” flag of OUT endpoints and the “full” flag of IN endpoints; the “programmable-level” flag is

Page 9-6 EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

equally useful for either type of endpoint (it can, for instance, give advance warning that an OUT
endpoint is almost empty or that an IN endpoint is almost full).

The FLAGA, FLAGB, and FLAGC pins can operate in either of two modes: Indexed or Fixed, as
selected via the PINFLAGSAB and PINFLAGSCD registers. The FLAGD pin operates in Fixed
mode only. Each pin is configured independently; some pins can be in Fixed mode while others are
in Indexed mode. See Chapter 15, "Registers," for complete details.

Flag pins configured for Indexed mode report the status of the FIFO currently selected by the
FIFOADRJ1:0] pins. When configured for Indexed mode, FLAGA reports the “programmable-level”
status, FLAGB reports the “full” status, and FLAGC reports the “empty” status.

Flag pins configured for Fixed mode report one of the three conditions for a specific FIFO, regard-
less of the state of the FIFOADR][1:0] pins. The condition and FIFO are user-selectable. For exam-
ple, FLAGA could be configured to report FIFO2's “empty” status, FLAGB to report FIFO4's
“empty” status, FLAGC to report FIFO4's “programmable level” status, and FLAGD to report
FIFOG6's “full” status.

The polarity of the “empty” and “full” flag pins defaults to active-low but may be inverted via the
FIFOPINPOLAR register.

At power-on reset, the FIFO flags are configured for Indexed operation.

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5- 48MHz

FIFOADR[1:0]

FLAGA

FLAGB
EP2FIFOBUF EP2 |__FLAGC >
EP4FIFOBUF [EP4 FLAGD/SLCS#

EP6FIFOBUF Nl EP6 < >

EP8FIFOBUF EP8 SLOE
SLRD

? SLWR
PKTEND

FD[15:0] >

Figure 9-8. FLAGX

Chapter 9. Slave FIFOs Page 9-7

EZ-USB FX2 Technical Reference Manual

9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[1:0])

The Slave FIFO “control” pins are SLOE (Output Enable), SLRD (Read), SLWR (Write), PKTEND
(Packet End), and FIFOADR[1:0] (FIFO Select). “Read” and “Write” are from the external master’s
point of view; the external master reads from OUT endpoints and writes to IN endpoints. See
Figure 9-9.

Read — SLOE and SLRD:

In synchronous mode (IFCONFIG.3 = 0), the FIFO pointer is incremented on each rising edge of
IFCLK while SLRD is asserted. In asynchronous mode (IFCONFIG.3 = 1), the FIFO pointer is
incremented on each asserted-to-deasserted transition of SLRD.

The SLOE pin enables the FD outputs.

By default, SLOE and SLRD are active-low; their polarities can be changed via the
FIFOPINPOLAR register.

Write — SLWR:

In synchronous mode (IFCONFIG.3 = 0), data on the FD bus is written to the FIFO (and the FIFO
pointer is incremented) on each rising edge of IFCLK while SLWR is asserted. In asynchronous
mode (IFCONFIG.3 = 1), data on the FD bus is written to the FIFO (and the FIFO pointer is incre-
mented) on each asserted-to-deasserted transition of SLWR.

By default, SLWR is active-low; its polarity can be changed via the FIFOPINPOLAR register.
FIFOADR[1:0]:

The FIFOADRJ1:0] pins select which of the four FIFOs is connected to the FD bus (and, if the
FIFO flags are operating in Indexed mode, they select which FIFO's flags are presented on the
FLAGX pins):

Table 9-2. FIFO Selection via FIFOADR[1:0]

Selected
FIFOADR[1:0] FIFO
00 EP2
01 EP4
10 EP6
11 EPS8

Page 9-8 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

PKTEND:

An external master asserts the PKTEND pin to commit an IN packet to USB regardless of the
packet’s length. PKTEND is usually used when the master wishes to send a “short” packet (i.e., a
packet smaller than the size specified in the EPXAUTOINLENH:L registers).

For example: Assume that EPAAUTOINLENH:L is set to the default of 512 bytes. If AUTOIN =1,
the external master can stream data to FIFO4 continuously, and (absent any bottlenecks in the
data path) the FX2 will automatically commit a packet to USB whenever the FIFO fills with 512
bytes. If the master wants to send a stream of data whose length is not a multiple of 512, the last
packet will not be automatically committed to USB because it's smaller than 512 bytes. To commit
that last packet, the master can do one of two things: It can pad the packet with dummy data in
order to make it exactly 512 bytes long, or it can write the short packet to the FIFO then assert the
PKTEND pin.

If the FIFO is configured to allow zero-length packets (EPxFIFOCFG.2 = 1), asserting the
PKTEND pin when the FIFO is empty will commit a zero-length packet.

By default, PKTEND is active-low; its polarity can be changed via the FIFOPINPOLAR register.
NG

The PKTEND pin must not be asserted unless a buffer is available, even if only a zero-length
packet is being committed. The “full” flag may be used to determine whether a buffer is available.

FX2 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5 - 48MHz

FIFOADR[1:0]

FLAGA
FLAGB
EP2FIFOBUF EP2 FLAGC

EP4FIFOBUF O EP4 lFLAGD/SLCS#r
EP6FIFOBUF EP6

EP8SFIFOBUF EP8 SLOE
SLRD

f SLWR
PKTEND

FD[15:0] >

Figure 9-9. Slave FIFO Control Pins

Chapter 9. Slave FIFOs Page 9-9

EZ-USB FX2 Technical Reference Manual

9.2.6 Slave FIFO Chip Select (SLCS)

The “Slave FIFO Chip Select” pin (SLCS) is an alternate function of pin PA7; it's enabled via the
PORTACFG.6 bit (see Section 13.3.1, "Port A Alternate Functions").

The SLCS pin allows external logic to effectively remove the FX2 from the FIFO Data bus, in order
to, for example, share that bus among multiple slave devices.

While the SLCS pin is pulled high by external logic, the FX2 floats its FD[x:0] pins and ignores the
SLOE, SLRD, SLWR, and PKTEND pins.

9.2.7 Implementing Synchronous Slave FIFO Writes

< IFCLK 5-48MHz
¢ FIFOADRIL0]
FLAGB FULL >
FX2 ¢ SLWR EXT.
Slave ¢ FD[150] | Mader
Mode
¢ PKTEND

Figure 9-10. Interface Pins Example: Synchronous FIFO Writes

Typically, the sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.
STATE 3: Drive data on the bus, assertSLWR for one IFCLK, transition to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Page 9-10 EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

Figure 9-11. State Machine Example: Synchronous FIFO Writes

IFCLK | | ﬂ | | | ﬂ | | | ﬂ |

FADDRO

FADDR1 E

FLAGB - FULL_Master Selects EP8 EP8 Not Empty

FLAGC -EMPTY

SLWR

FD[15:0] z | N | N+1

PKTEND

Figure 9-12. Timing Example: Synchronous FIFO Writes, Waveform 1

Chapter 9. Slave FIFOs Page 9-11

EZ-USB FX2 Technical Reference Manual

A L) LA L LA |

FADDRO

FADDR1 CoreAuto
— Commits Pkt

FLAGB —FULL_ AUTOIN=1

FLAGC -EMPTY

SLWR

FD[15:0] 510 I 511 I 512

PKTEND

Figure 9-13. Timing Example: Synchronous FIFO Writes, Waveform 2

FoLK LA L] LA L] LA |
FADDRO
FADDR1

FLAGB - FULL

Y

Data Not
W ritten

FLAGC -EMPTY

SLWR

FD[15:0] 815 | / 816 I N

PKTEND

Master Manually
Commits Short Pkt

Figure 9-14. Timing Example: Synchronous FIFO Writes, Waveform 3, PKTEND Pin lIllustrated

Page 9-12 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

9.2.8 Implementing Synchronous Slave FIFO Reads

IFCLK

5-48MHz

N
g¢— FIFOADRI1:0]

FLAGC EMPTY >
FX2 < SHOF EXT.
Slave < SLRD Master
Mode

FD[L5:0])

Figure 9-15. Interface Pins Example: Synchronous FIFO Reads

Typically, the sequence of events for the external master is:
IDLE: When read event occurs, transition to State 1.
STATE 1: Point to OUT FIFO, assert FIFOADRJ[1:0], transition to State 2.

STATE 2: Assert SLOE. If FIFO-Empty flag is false (FIFO not empty), transition to State 3 else
remain in State 2.

STATE 3: Sample data on the bus, increment pointer by asserting SLRD for one IFCLK, de-assert
SLOE, transition to State 4.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Figure 9-16. State Machine Example: Synchronous FIFO Reads

Chapter 9. Slave FIFOs Page 9-13

EZ-USB FX2 Technical Reference Manual

IFCLK | |ﬂ |ﬂ |ﬂ |ﬂ |ﬂ |

FADDRO
FADDR1
FLAGB -FULL Selects EP2
_ Asserts SLOE then _
FLAGC -EMPTY Reads First Byte Increments to Next

in FIFO Byte in FIFO

SLOE: [K.
SLRD: I—li

FD[15:0] z | N | vt

Figure 9-17. Timing Example: Synchronous FIFO Reads, Waveform 1

IFCLK | |ﬂ |ﬂ |ﬂ |ﬂ |ﬂ |

FADDRO

FADDR1

FLAGB - FULL EP2 Empty

FLAGC -EMPTY |
_ Reads 1023 Byte Reads Last Byte in

SLOE in FIFO FIFO
SLRD

FD[15:0] 1023 I 1024 I z

Figure 9-18. Timing Example: Synchronous FIFO Reads, Waveform 2, EMPTY Flag lllustrated

Page 9-14 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

9.2.9 Implementing Asynchronous Slave FIFO Writes

| §—F!FOADR[1:0]
FLAGB FULL >
¢ SLWR
SIT;(VZe g¢— FDI15:0] EXT.
¢— PKTEND Master
Mode

Figure 9-19. Interface Pins Example: Asynchronous FIFO Writes

Typically, the sequence of events for the external master is:

IDLE: When write event occurs, transition to State 1.

STATE 1: Point to IN FIFO, assert FIFOADR[1:0], transition to State 2.

STATE 2: If FIFO-Full flag is false (FIFO not full), transition to State 3 else remain in State 2.

STATE 3: Drive data on the bus, increment pointer by asserting then de-asserting SLWR, transition
to State 4.

STATE 4: If more data to write, transition to State 2 else transition to IDLE.

Figure 9-20. State Machine Example: Asynchronous FIFO Writes

Chapter 9. Slave FIFOs Page 9-15

EZ-USB FX2 Technical Reference Manual

IFCLK

FADDRO
FADDR1

FLAGB - FULL

FLAGC -EMPTY |

SLWR

FD[15:0] z | N | N+1

PKTEND

Figure 9-21. Timing Example: Asynchronous FIFO Writes

Page 9-16 EZ-USB FX2 Technical Reference Manual v2.1

9.2.10 Implementing Asynchronous Slave FIFO Reads

FLAGB

FX2
Slave
Mode

&—F'FOADR[1:0]
EMPTY <

< SLOE

< SLRD
FD[15:0]

EXT.

—» Master

iul ESS

Figure 9-22. Interface Pins Example: Asynchronous FIFO Reads

Typically, the sequence of events for the external master is:

IDLE: When read event occurs, transition to State 1.

STATE 1: Point to OUT FIFO, assert FIFOADRJ[1:0], transition to State 2.

STATE 2: If Empty flag is false (FIFO not empty), transition to State 3 else remain in State 2.

STATE 3: Assert SLOE, assert SLRD, sample data on the bus, de-assert SLRD (increment
pointer), de-assert SLOE, transition to State 4.

STATE 4: If more data to read, transition to State 2 else transition to IDLE.

Launch

State 1

State 4

Figure 9-23. State Machine Example: Asynchronous FIFO Reads

Chapter 9. Slave FIFOs

Page 9-17

EZ-USB FX2 Technical Reference Manual

IFCLK

FADDRO
FADDR1

FLAGB -FULL

FLAGC -EMPTY

SLOE |

—
SLRD: | Ii

FD[15:0] z | N | v

Figure 9-24. Timing Example: Asynchronous FIFO Reads

Page 9-18 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

9.3 Firmware

This section describes the interface between FX2 firmware and the FIFOs. More information is
available in Chapter 8, "Access to Endpoint Buffers."

Table 9-3. Registers Associated with Slave FIFO Firmware

EPXCFG INPKTEND
EPXFIFOCFG EPXFIFOIE
EPXAUTOINLENH/L EPXFIFOIRQ
EPXFIFOPFH:L INT2IVEC
EP2468STAT INT4IVEC
EP24FIFOFLGS INTSETUP
EP68FIFOFLGS IE

EPXCS IP
EPXFIFOFLGS INT2CLR
EPXBCH:L INTACLR
EPXFIFOBCH:L EIE
EPXFIFOBUF EXIF
REVCTL (bits 0 and 1 must be initialized to 1 for operation as described in this chapter)

9.3.1 Firmware FIFO Access

FX2 firmware can access the slave FIFOs using four registers in XDATA memory: EP2FIFOBUF,
EP4FIFOBUF, EP6FIFOBUF, and EPBFIFOBUF. These registers can be read and written directly
(using the MOVX instruction), or they can serve as sources and destinations for the dual Auto-
pointer mechanism built into the EZ-USB FX2 (see Section 8.8. "Autopointers").

Additionally, there are a number of FIFO control and status registers: Byte Count registers indicate
the number of bytes in each FIFO; flag bits indicate FIFO fullness, mode bits control the various
FIFO modes, etc.

This chapter focuses on the registers and bits which are specific to slave-FIFO operation; for a
fuller description of all the FIFO registers, see Chapter 8 "Access to Endpoint Buffers" and Chapter
15, "Registers."

N
For proper operation as described in this chapter, FX2 firmware must set the DYN_OUT and
ENH_PKT bits (REVCTL.0 and REVCTL.1) to 1.

Chapter 9. Slave FIFOs Page 9-19

EZ-USB FX2 Technical Reference Manual

FX2 Registers

Slave FIFOs

30/48MHz

Device Pins

IFCLK

5- 48MHz

FIFOADR[1:0]

EP2FIFOBUF
EP4FIFOBUF O
EP6FIFOBUF

EP8FIFOBUF

EP2

EP4

FLAGA
FLAGB

|_FLAGC
FLAGD/SLCS#®

EP6

EP8

< >

SLOE
SLRD

SLWR
PKTEND

Tf

FD[15:0] >

Figure 9-25. EPXFIFOBUF Registers

9.3.2 EPx Memories

The slave FIFOs connect external logic to the FX2's four endpoint memories (EP2, EP4, EP6, and
EP8). These endpoint memories have the following programmable features:

Direction can be either IN or OUT.

a s wbdkE

AUTOOUT=1).

Type can be either BULK, INTERRUPT, or ISOCHRONOUS.

For EP2 and EP6, size can be either 512 or 1024 bytes. EP4 and EP8 are fixed at 512 bytes.
Buffering can be 2x, 3x, or 4x for EP2 and EP6. EP4 and EPS8 are fixed at 2x.
FX2 automatically commits endpoint data to and from the slave FIFO interface (AUTOIN=1,

At power-on-reset, these endpoint memories are configured as follows:

A owbdpR

Page 9-20

EP2 - Bulk OUT, 512 bytes/packet, 2x buffered.
EP4 - Bulk OUT, 512 bytes/packet, 2x buffered.
EP6 - Bulk IN, 512 bytes/packet, 2x buffered.
EP8 - Bulk IN, 512 bytes/packet, 2x buffered.

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

8051 Registers Slave FIFOs Device Pins

30/48MHz

IFCLK
5- 48MHz

FIFOADR[1:0]

FLAGA
FLAGB

EP2FIFOBUF EP2 | FLAGC >
EP4FIFOBUF O [EP4 | FLAGD/SLCS#
EP6FIFOBUF EP6 < >

EP8SFIFOBUF EP8 SLOE
SLRD

f SLWR
PKTEND

FD[15:0] >

Figure 9-26. EPx Memories

9.3.3 Slave FIFO Programmable-Level Flag (PF)

Each FIFO’s programmable-level flag (PF) asserts when the FIFO reaches a user-defined fullness
threshold. That threshold is configured as follows:

1. For OUT packets: The threshold is stored in PFC12:0. The PF is asserted when the number of
bytes in the entire FIFO is less than/equal to (DECIS=0) or greater than/equal to (DECIS=1)
the threshold.

2. For IN packets, with PKTSTAT = 1: The threshold is stored in PFC9:0. The PF is asserted
when the number of bytes written into the current packet in the FIFO is less than/equal to
(DECIS=0) or greater than/equal to (DECIS=1) the threshold.

3. For IN packets, with PKTSTAT = 0: The threshold is stored in two parts: PKTS2:0 holds the
number of committed packets, and PFC9:0 holds the number of bytes in the current packet.
The PF is asserted when the FIFO is at or less full than (DECIS=0), or at or more full than
(DECIS=1), the threshold.

By default, FLAGA is the Programmable-Level Flag (PF) for the endpoint currently pointed to by
the FIFOADR[1:0] pins. For EP2 and EP4, the default endpoint configuration is BULK, OUT, 512,
2x, and the PF pin asserts when the entire FIFO has greater than/equal to 512 bytes. For EP6 and
EP8, the default endpoint configuration is BULK, IN, 512, 2x, and the PF pin asserts when the
entire FIFO has less than/equal to 512 bytes.

In other words, the default-configuration PFs for EP2 and EP4 assert when the FIFOs are half-full,
and the default-configuration PFs for EP6 and EP8 assert when those FIFOs are half-empty.

See Chapter 15, "Registers," for full details.

Chapter 9. Slave FIFOs Page 9-21

EZ-USB FX2 Technical Reference Manual

9.3.4 Auto-In/ Auto-Out Modes

The FX2 FIFOs can be configured to commit packets to/from USB automatically. For IN endpoints,
Auto-In Mode allows the external logic to stream data into a FIFO continuously, with no need for it
or the FX2 firmware to packetize the data or explicitly signal the FX2 to send it to the host. For
OUT endpoints, Auto-Out Mode allows the host to continuously fill a FIFO, with no need for the
external logic or FX2 firmware to handshake each incoming packet, arm the endpoint buffers, etc.
See Figure 9-27.

CPU

Host ——Jp USB Data Path > sjave —PMaster

AUTOOUT=1

Figure 9-27. When AUTOOUT=1, OUT Packets are Automatically Committed

To configure an IN endpoint FIFO for Auto Mode, set the AUTOIN bit in the appropriate
EPXFIFOCFG register to 1. To configure an OUT endpoint FIFO for Auto Mode, set the AUTOOUT
bit in the appropriate EPXFIFOCFG register to 1. See Figures 9-28 and 9-29.

At power-on reset, all FIFOs default to Manual Mode (i.e., AUTOIN = 0 and AUTOOUT = 0).

TD Init():

REVCTL = 0x03; /1 MJUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;

EP2CFG = 0xAZ2; /1 EP2 is DI R=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

FI FORESET = 0x80; /] Reset the FIFO

SYNCDELAY;
FI FORESET
SYNCDELAY;
FI FORESET
SYNCDELAY;
EP2FI FOCFG = 0x10; /1 EP2 is AUTOOUT=1, AUTO N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;

QUTPKTEND = 0x82; /1 Armboth EP2 buffers to “prime the punp”
SYNCDELAY;

QUTPKTEND = 0x82;

0x02;

0x00;

Figure 9-28. TD_Init Example: Configuring AUTOOUT =1

Page 9-22 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

TD Init():

REVCTL = 0x03; /!l MJST set REVCTL.0 and REVCTL.1 to 1

SYNCDELAY;

SYNCDELAY;

EP8CFG = O0OxEOQ; /1 EP8 is DI R=IN, TYPE=BULK

SYNCDELAY;

FI FORESET = 0x80; /! Reset the FIFO

SYNCDELAY;

FI FORESET = 0x08;

SYNCDELAY;

FI FORESET = 0xO00;

SYNCDELAY;

EP8FI FOCFG = 0x0C; /1l EP8 is AUTOOUT=0, AUTO N=1, ZEROLEN=1, WORDW DE=0
SYNCDELAY;
EPSAUTO NLENH
SYNCDELAY;
EPSAUTO NLENL

0x02; // Auto-commt 512-byte packets

0x00;

Figure 9-29. TD_Init Example: Configuring AUTOIN =1

9.3.5 CPU Access to OUT Packets, AUTOOUT =1

The FX2's CPU is not in the host-to-master data path when AUTOOUT = 1.To achieve the maxi-
mum USB 2.0 bandwidth, the host and master are directly connected, bypassing the CPU.
Figure 9-30 shows that, in Auto-Out mode, data from the host is automatically committed to the
FIFOs with no firmware intervention.

TD_Pol 1 ():

/1 no code necessary to xfr data fromhost to naster!
/1 AUTOOUT=1 and S| ZE=0 auto-commits packets
/1 in 512 byte chunks.

Figure 9-30. TD_Poll Example: No Code Necessary for OUT Packets When AUTOOUT=1

Chapter 9. Slave FIFOs Page 9-23

EZ-USB FX2 Technical Reference Manual

9.3.6 CPU Access to OUT Packets, AUTOOUT =0

In some systems, it may be desirable to allow the FX2's CPU to participate in the transfer of data
between the host and the slave FIFOs. To configure a FIFO for this “Manual-Out” mode, the
AUTOOUT bit in the appropriate EPXFIFOCFG register must be cleared to 0 (see Figure 9-31).

TD Init():

REVCTL = 0x03; /] MJST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;

EP2CFG = OxAZ2; /] EP2 is DI R=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

FI FORESET = 0x80; /! Reset the FIFO

SYNCDELAY;

FI FORESET = 0x02;

SYNCDELAY;

FI FORESET = 0x00:;

SYNCDELAY;

EP2FI FOCFG = 0x00; /1 EP2 is AUTOOUT=0, AUTO N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;

QUTPKTEND = 0x82; /1 Armboth EP2 buffers to “prinme the punp”
SYNCDELAY;

OUTPKTEND = 0x82;

Figure 9-31. TD_Init Example, Configuring AUTOOUT=0

As lllustrated in Figure 9-32, FX2 firmware can do one of three things when the FX2 is in Manual-
Out mode and a packet is received from the host:

1.

It can commit (pass to the FIFOs) the packet by writing OUTPKTEND with SKIP=0 (Figur e9-
33).

It can skip (discard) the packet by writing OUTPKTEND with SKIP=1 (Figur €9-34).

It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly,

then writing the length of the packet to EPXBCH:L. The write to EPxBCL commits the edited
packet, so EPxBCL should be written after writing EPXxBCH (Figure9-35).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet.

See Section 8.6.2.4 for a detailed description of the SKIP bit.

Page 9-24 EZ-USB FX2 Technical Reference Manual v2.1

igﬂ*ltﬁﬂﬁ

EPxBCH:L
CPU
skip =0
Host — Data —®Master
UsB \t : Slave
skip=1

AUTOOUT =0

Figure 9-32. Skip, Commit, or Source (AUTOOUT=0)

TD Pol I ():

if(!(EP2468STAT & 0x01))
{ Il EP2EF=0 when FI FO NOT enpty, host sent packet
QUTPKTEND = 0x02; // SKIP=0, pass buffer on to naster

}

Figure 9-33. TD_Poll Example, AUTOOUT=0, Commit Packet

TD_Pol 1 ():

if(!'(EP2468STAT & 0x01))
{ Il EP2EF=0 when FI FO NOT enpty, host sent packet
QUTPKTEND = 0x82; // SKIP=1, do NOT pass buffer on to master

}

Figure 9-34. TD_Poll Example, AUTOOUT=0, Skip Packet

Chapter 9. Slave FIFOs Page 9-25

EZ-USB FX2 Technical Reference Manual

TD Pol I ():

i f(EP24FI FOFLGS & 0x02)

{

SYNCDELAY; /1

FI FORESET = 0x80; /1 nak all QUT pkts. from host
SYNCDELAY; /1

FI FORESET = 0x02; /1 advance all EP2 buffers to cpu domain
SYNCDELAY; /1

EP2FI FOBUF[0] = OxAA; /1l create newly sourced pkt. data
SYNCDELAY; /1

EP2BCH = 0x00;

SYNCDELAY; /1

EP2BCL = 0x01; /1l commit newly sourced pkt. to interface fifo

/1l beware of "left over" unconmtted buffers

SYNCDELAY; I

QUTPKTEND = 0x82; /1 skip uncommitted pkt. (second pkt.)
/1 note: core will not allow pkts. to get out of sequence
SYNCDELAY; I

FI FORESET = 0x00; /'l release "nak all"

}

Figure 9-35. TD_Poll Example, AUTOOUT=0, Source

NG

If an uncommitted packet is in an OUT endpoint buffer when the FX2 is reset, that packet is not
automatically committed to the master. To ensure that no uncommitted packets are in the endpoint
buffers after a reset, the FX2 firmware’s “endpoint initialization” routine should skip 2, 3, or 4 pack-
ets (depending on the buffering depth selected for the FIFO) by writing OUTPKTEND with
SKIP=1. See Figure 9-36.

Page 9-26 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

TD Init():

REVCTL = 0x03; /1 MJST set REVCTL.O0 and REVCTL.1 to 1

SYNCDELAY;

SYNCDELAY;

EP2CFG = 0xAZ2; /1 EP2 is DI R=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

EP2FI FOCFG = 0x00; // EP2 is AUTOOUT=0, AUTO N=0, ZERCLEN=0, WORDW DE=0

/1 QUT endpoints do NOT cone up arned
SYNCDELAY;
OUTPKTEND
SYNCDELAY;
QUTPKTEND = 0x82; // arm second buffer by witing OUTPKTEND w ski p=1

0x82; /1 armfirst buffer by witing OQUTPKTEND w ski p=1

Figure 9-36. TD_Init Example, OUT Endpoint Initialization

9.3.7 CPU Access to IN Packets, AUTOIN =1

Auto-In mode is similar to Auto-Out mode: When an IN FIFO is configured for Auto-In mode (by
setting its AUTOIN bit to 1), data from the master is automatically packetized and committed to
USB without any CPU intervention (see Figure 9-37).

TD Pol I ():

/1 no code necessary to xfr data fromnmaster to host!
/1 AUTO N=1 and EPS8AUTO NLEN=512 auto commits packets
/1 in 512 byte chunks.

Figure 9-37. TD_Poll Example, AUTOIN =1

Auto-In mode differs in one important way from Auto-Out mode: In Auto-Out mode, data (excluding
data in short packets) is always auto-committed in 512- or 1024-byte packets; in Auto-In mode, the
auto-commit packet size may be set to any non-zero value (with the single restriction, of course,
that the packet size must be less than or equal to the size of the endpoint buffer). Each FIFO’s
Auto-In packet size is stored in its EPXAUTOINLENH:L register pair.

To source an IN packet, FX2 firmware can temporarily halt the flow of data from the external mas-
ter (via a signal on a general-purpose 1/O pin, typically), wait for an endpoint buffer to become
available, create a new packet by writing directly to that buffer, then commit the packet to USB and
release the external master. In this way, the firmware can insert its own packets in the data stream.
See Figure 9-38, which illustrates data flowing directly between the master and the host, and
Figure 9-39, which shows the firmware sourcing an IN packet. A firmware example appears in
Figure 9-40.

Chapter 9. Slave FIFOs Page 9-27

EZ-USB FX2 Technical Reference Manual

Page 9-28

USB

I/0 | Busy
CPU
v
Data Path Slave 4—Master
AUTOIN=1

Figure 9-38. Master Writes Directly to Host, AUTOIN = 1

Host

USB

1/0 | Busy
CPU
Data Path Slave Master

AUTOIN=0 or

AUTOIN=1

Figure 9-39. Firmware Intervention, AUTOIN =0 or 1

EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

TD Pol I ():

i f(source_pkt_event)
{ // 100-nmsec background tiner fired
i f(holdoff_master())
{ I/ signaled “busy” to master successful
while(!'(EP68FI FOFLGS & 0x20))
{ // EP8BEF=0, when buffer not enpty
o /]l wait ‘til host takes entire FIFO data

}
FI FORESET = 0x80; // initiate the “source packet” sequence
SYNCDELAY;
FI FORESET = 0x06;
SYNCDELAY;
FI FORESET = 0x00;
EP8FI FOBUF[0] = 0x02; // <STX>, packet start of text nsg
EPS8FI FOBUF[1] = 0x06; // <ACK>
EP8FI FOBUF[2] = 0x07; // <HEARTBEAT>
EP8FI FOBUF[3] = 0x03; // <ETX>, packet end of text msg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x04; // pass new y-sourced buffer on to host
}
el se
{
hi story_record(EP8, BAD MASTER);
}

}

Figure 9-40. TD_Poll Example: Sourcing an IN Packet

Chapter 9. Slave FIFOs Page 9-29

EZ-USB FX2 Technical Reference Manual

9.3.8 Access to IN Packets, AUTOIN=0

In some systems, it may be desirable to allow the FX2's CPU to participate in every data-transfer
between the external master and the host. To configure a FIFO for this “Manual-In” mode, the
AUTOIN bit in the appropriate EPxXFIFOCFG register must be cleared to O.

In Manual-In mode, FX2 firmware can commit, skip, or edit packets sent by the external master,
and it may also source packets directly. To commit a packet, firmware writes the endpoint number
(with SKIP=0) to the INPKTEND register. To skip a packet, firmware writes the endpoint number
with SKIP=1 to the INPKTEND register. To edit or source a packet, firmware writes to the FIFO
buffer, then writes the packet length to EPXxBCH and EPxBCI (in that order).

TD_Pol 1 ():

if(master_finished_longxfr())
{ // master currently points to EP8, pins FlI FOADR[1: 0] =11
if(!(EP68FI FOFLGS & 0x10))
{ Il EP8FF=0 when buffer avail able
I NPKTEND = 0x08; // firmwvare commts EP8 packet
/1 by witing 8 to | NPKTEND
rel ease_master(EP8);
}
}

Figure 9-41. TD_Poll Example, AUTOIN=0, Committing a Packet via INPKTEND

TD_Pol 1 ():

if(master_finished_longxfr())
{ // master currently points to EP8, pins FlIFOADR[1: 0] =11
if(!(EP68FI FOFLGS & 0x10))
{ Il EP8FF=0 when buffer avail able
I NPKTEND = 0x88; // firmwnare skips EP8 packet
/1 by witing 0x88 to | NPKTEND
rel ease_master(EP8);
}
}

Figure 9-42. TD_Poll Example, AUTOIN=0, Skipping a Packet via INPKTEND

Page 9-30 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

TD Pol I ():

if(master_finished_xfr())

{ I/ nodify the data
EP8FI FOBUF[0] 0x02; // <STX>, packet start of text mnsg
EP8FI FOBUF[7] 0x03; // <ETX>, packet end of text nsg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x08; // pass buffer on to host

Figure 9-43. TD_Poll Example, AUTOIN=0, Editing a Packet via EPXxBCH:L

9.3.9 Auto-In/ Auto-Out Initialization
Enabling Auto-In transfers between slave FIFO and endpoint

Typically, a FIFO is configured for Auto-In mode as follows:

Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.
Set bits IFCFG1:0=11.

Reset the FIFOs.

Set bit EPXFIFOCFG.3=1.

Set the size via the EPXAUTOINLENH:L registers.

a s wbdPRE

Enabling Auto-Out transfers between endpoint and slave FIFO

Typically, a FIFO is configured for Auto-Out mode as follows:

Configure bits IFCONFIG[7:4] to define the behavior of the interface clock.
Set bits IFCFG1:0=11.

Reset the FIFOs.

Set bit EPXFIFOCFG.4=1.

A ownbdpR

Chapter 9. Slave FIFOs Page 9-31

EZ-USB FX2 Technical Reference Manual

9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers

TD Init():

REVCTL = 0x083; /1 MUST set REVCTL.O0 and REVCTL.1 to 1
SYNCDELAY;

FI FORESET = 0x80; // reset all FIFOs

SYNCDELAY;

FI FORESET = 0x02;

SYNCDELAY;

FI FORESET = 0x04;

SYNCDELAY;

FI FORESET = 0x06;

SYNCDELAY;

FI FORESET = 0x08;

SYNCDELAY;

FI FORESET = 0x00;

SYNCDELAY; /1l this defines the external interface to be the follow ng:

| FCONFI G = 0x43; /1 use I FCLK pin driven by external logic (5MHz to 48VHz)

/'l use slave FIFOinterface pins driven sync by external master
EP8FI FOCFG = Ox0C; // this lets the FX2 auto conmt |IN packets, gives the

/1 ability to send zero | ength packets,

/1 and sets the slave FIFO data interface to 8-bits
EP8CFG = OxEO; /Il sets EP8 valid for INs

/1 and defines the endpoint for 512 byte packets, 2x buffered
PI NFLAGSAB = 0x00; // defines FLAGA as prog-level flag, pointed to by FI FOADR] 1: 0]
SYNCDELAY; /1 FLAGB as full flag, as pointed to by FIFQADR 1:0]
Pl NFLAGSCD = 0x00; // FLAGC as enpty flag, as pointed to by FlIFOADR 1: 0]

/1 won't generally need FLAGD

PORTACFG = 0x00; /'l used PA7/FLAGD as a port pin, not as a FIFO fl ag
FI FOPI NPOLAR = 0x00; // set all slave FIFO interface pins as active |ow

SYNCDELAY;
EPSBAUTO NLENH = 0x02; // you can define these as you wi sh,
SYNCDELAY; /1 to have the FX2 automatically limt INs

EPS8AUTO NLENL = 0x00;

SYNCDELAY;

EP8FI FOPFH = 0x82; // you can define the programmble flag (FLAGA)
SYNCDELAY; /1 to be active at the |level you w sh

EP8FI FOPFL = 0x00;

SYNCDELAY; /1l out endpoints do not POR (power-on reset) arnmed
EP2BCL = 0x80; /'l since the defaults are double buffered we nust
SYNCDELAY; /1 write dummy byte counts twi ce

EP2BCL = 0x80; /1 arm EP2QUT & EPAQUT by witing to the byte count w skip.
SYNCDELAY;

EP4BCL = 0x80;

SYNCDELAY;

EP4BCL = 0x80;

TD Pol I ():
/1 nothing! The FX2 is doing all the work of transferring packets
/1 fromthe external naster sync interface to the endpoint buffer...

Figure 9-44. Code Example, Synchronous Slave FIFO IN Data Transfer

Page 9-32 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers

The initialization code is exactly the same as for the synchronous-transfer example in Section
9.3.10, but with IFCLK configured for internal use at a rate of 48 MHz and the ASYNC bit set to 1.
Figure 9-45 shows the one-line modification that's needed.

TD Init(): [/ slight nodification fromour synchronous firmare exanple
| FCONFI G = 0xCB;

/1 this defines the external interface as follows:

/1 use internal |FCLK (48VHz)

/1 use slave FIFO interface pins asynchronously to external naster

Figure 9-45. TD_Init Example, Asynchronous Slave FIFO IN Data Transfers

Code to perform the transfers is, as before, unnecessary; as Figure 9-46 illustrates.

TD_Pol | ():
/1 nothing! The FX2 is doing all the work of transferring packets
/1 fromthe external master async interface to the endpoint buffer...

Figure 9-46. TD_Poll Example, Asynchronous Slave FIFO IN Data Transfers

9.4 Switching Between Manual-Out and Auto-Out

Because OUT endpoints are not automatically armed when the FX2 enters Auto-Out mode, the
firmware can safely switch the FX2 between Manual-Out and Auto-Out modes without any need to
flush or reset the FIFOs.

Chapter 9. Slave FIFOs Page 9-33

EZ-USB FX2 Technical Reference Manual

Page 9-34 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 10 General Programmable Interface (GPIF)

10.1 Introduction

The General Programmable Interface (GPIF) is an internal master to the FX2's endpoint FIFOs. It
replaces the external “glue” logic which might otherwise be required to build an interface between
the FX2 and the outside world.

At the GPIF’s core is a programmable state machine which generates up to six “control” and nine
“address” outputs, and accepts six external and two internal “ready” inputs. Four user-defined
Waveform Descriptors control the state machine; generally (but not necessarily), one is written for
FIFO reads, one for FIFO writes, one for single-byte/word reads, and one for single-byte/word
writes.

N
“Read” and “Write” are from the FX2's point of view. “Read” waveforms transfer data from the
outside world to the FX2; “Write” waveforms transfer data from the FX2 to the outside world.

FX2 firmware can assign the FIFO-read and -write waveforms to any of the four FIFOs, and the
GPIF will generate the proper strobes and handshake signals to the outside-world interface as data
is transferred into or out of that FIFO.

As with external mastering (see Chapter 9 "Slave FIFOs"), the data bus between the FIFOs and
the outside world can be either 8 or 16 bits wide.

The GPIF is not limited to simple handshaking interfaces between the FX2 and external ASICs or
microprocessors; it's powerful enough to directly implement such protocols as ATAPI (PIO and
UDMA), IEEE 1284 (EPP Parallel Port), Utopia, etc. An FX2 can, for instance, function as a single-
chip interface between USB and an IDE hard disk drive or CompactFlash™ memory card.

This chapter provides an overview of GPIF, discusses external connections, and explains the oper-
ation of the GPIF engine. Figure 10-1 presents a block diagram illustrating GPIF’s place in the FX2
system.

N
GPIF waveforms are generally created with the Cypress GPIFTool utility, a Windows™-based
application which is distributed with the Cypress EZ-USB FX2 Development Kit. Although this

Chapter 10. General Programmable Interface (GPIF) Page 10-1

EZ-USB FX2 Technical Reference Manual

chapter will describe the structure of the Waveform Descriptors in some detail, knowledge of that
structure is usually not necessary. The GPIFTool simply hides the complexity of the Waveform
Descriptors; it doesn’t compromise the programmer’s control over the GPIF in any way.

8051 XDATA GPIF Device Pins
FD[15:0]

>
| y | L 30/48MHz
| XGPIFSGLDATHIL | l

nggvDewFllgg—sl EPXEF
EP2FIFOBUF EPxFF
EP4FIFOBUF | EPXPF]
EP2 .
EP6FIFOBUF 2 SLOE | GPIFADR[8:0]
EPSFIFOBUF SLRD
—P EP6
EPS ¢SLWR | cTLs:0])
f f RDY[5:0
INPKTEND FIFOADRJ[1:0] ROV
Waveform Descriptors
8051 WEO GPIF
WF1
WF2
WF3 | GSTATE[:0]
XGPIFSGLDATLX >
GPIFTRIG >
GPIF DONE
<
GPIFWF
8051 INTRDY >
PORT I/O
L >

Figure 10-1. GPIF's Place in the FX2 System

Figure 10-2 shows an example of a simple GPIF transaction. For this transaction, the GPIF gener-
ates an address (GPIFADR][8:0]), drives the FIFO data bus (FD[15:0]), then waits for an exter-
nally-supplied handshake signal (RDYO0) to go low, after which it pulls its CTLO output low. When
the RDYO signal returns high, the GPIF brings its CTLO output high, then floats the data bus.

Page 10-2 EZ-USB FX2 Technical Reference Manual v2.1

igﬂ*ltﬁﬂﬁ

80 ; s1 .2 . s . s4 . S5 S6
GADR[8:0] A ! A+l
FD[15:0] z I VALID z
CTLO
RDYO

Figure 10-2. Example GPIF Waveform

10.1.1 Typical GPIF Interface

The GPIF allows the EZ-USB FX2 to connect directly to external peripherals such as ASICs,
DSPs, or other digital logic that uses an 8- or 16-bit parallel interface.

The GPIF provides external pins that can operate as outputs (CTL[5:0]), inputs (RDY[5:0]), Data
bus (FD[15:0]), and Address Lines (GPIFADR[8:0]).

A Waveform Descriptor in internal RAM describes the behavior of each of the GPIF signals. The
Waveform Descriptor is loaded into the GPIF registers by the FX2 firmware during initialization,
and it is then used throughout the execution of the code to perform transactions over the GPIF
interface.

Figure 10-3 shows a block diagram of a typical interface between the EZ-USB FX2 and a periph-
eral function.

Chapter 10. General Programmable Interface (GPIF) Page 10-3

EZ-USB FX2 Technical Reference Manual

FX2
Master
Mode

GPIFADR][8:0]

P
<« S g
« 2
CTL[5:0] - Peripheral
RDY[5:0]

B

‘ PORT I/O .

GSTATE[2:0]

- Debug

Figure 10-3. EZ-USB FX2 Interfacing to a Peripheral

The following sections detail the features available and steps needed to create an efficient GPIF
design. This includes definition of the external GPIF connections and the internal register settings,
along with FX2 firmware needed to execute data transactions over the interface.

Page 10-4

EZ-USB FX2 Technical Reference Manual v2.1

igﬂ*ltﬁﬂﬁ

10.2 Hardware

Table 10-1 lists the registers associated with the GPIF hardware; a detailed description of each
register may be found in Chapter 15, "Registers."

Table 10-1. Registers Associated with GPIF Hardware

GPIFIDLECS IFCONFIG
GPIFIDLECTL FIFORESET
GPIFCTLCFG EPXCFG
PORTCCFG EPXFIFOCFG
PORTECFG EPXAUTOINLENH/L
GPIFADRH/L EPxFIFOPFH/L
GPIFTCB3:0

GPIFWFSELECT EPXTRIG
EPXGPIFFLGSEL GPIFABORT

EPXGPIFPFSTOP

XGPIFSGLDATH/LX/LNOX

GPIFREADYCFG

GPIFSGLDATH/LX/NOX

GPIFREADYSTAT

GPIFTRIG

Note: The “x” in these register names represents 2, 4, 6, or 8; endpoints 0 and 1
are not associated with the GPIF.

10.2.1 The External GPIF Interface

The GPIF provides many general input and output signals with which external peripherals may be
interfaced gluelessly to the FX2.

The GPIF interface signals are shown in Table 10-2.

Table 10-2. GPIF Pin Descriptions

PIN IN/OUT Description
CTL[5:0] O/ Hi-Zz Programmable control outputs
RDY[5:0] | Sampleable ready inputs
FD[15:0] I/ O /Hi-Z | Bidirectional FIFO data bus
GPIFADRJ[8:0] O/ Hi-Zz Address outputs
IFCLK /0O Interface clock
GSTATE[2:0] O/ Hi-Z Current GPIF State number (for debug)

The Control Output pins (CTL[5:0]) are usually used as strobes (enable lines), read/write lines, etc.

Chapter 10. General Programmable Interface (GPIF) Page 10-5

EZ-USB FX2 Technical Reference Manual

The Ready Input pins (RDY[5:0]) are sampled by the GPIF and can force a transaction to wait
(inserting wait states), continue, or repeat until they're in a particular state.

The GPIF Data Bus is a collection of the FD[15:0] pins.
* An 8-bit wide GPIF interface uses pins FD[7:0].
* A 16 bit-wide GPIF interface uses pins FD[15:0].

The GPIF Address lines (GPIFADR[8:0]) can generate an incrementing address as data is trans-
ferred. If higher-order address lines are needed, other non-GPIF 1/O signals (i.e., general-purpose
I/O pins) may be used.

The Interface Clock, IFCLK, can be configured to be either an input (default) or an output interface
clock for synchronous interfaces to external logic.

The GSTATE[2:0] pins are outputs which show the current GPIF State number; they are typically
used only when debugging GPIF waveforms.

10.2.2 Default GPIF Pins Configuration

The FX2 comes out of reset with its I/O pins configured in “Ports” mode, not “GPIF Master” mode.
To configure the pins for GPIF mode, the IFCFG1.:0 bits in the IFCONFIG register must be set to
10 (see Table 13-10, “IFCFG Selection of Port I/O Pin Functions" for details).

Page 10-6 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

10.2.3 Six Control OUT Signals

The 100- and 128-pin FX2 packages bring out all six Control Output pins, CTL[5:0]. The 56-pin
package brings out three of these signals, CTL[2:0]. CTLx waveform edges can be programmed to
make transitions as often as once per IFCLK clock (once every 20.8 ns if IFCLK is running at
48MHz).

By default, these signals are driven high.
10.2.3.1 Control Output Modes
The GPIF Control pins (CTL[5:0]) have several output modes:

e CTL[3:0] can act as CMOS outputs (optionally tristatable) or open-drain outputs.
e CTL[5:4] can act as CMOS outputs or open-drain outputs.

If CTL[3:0] are configured to be tristatable, CTL[5:4] are not available.

Table 10-3. CTL[5:0] Output Modes

(GP”IE'T?_E‘FG » | GPIFCTLCFGIS:0] CTL[3:0] CTL[5:4]
0 0 CMOS, Not Tristatable CMOS, Not Tristatable
0 1 Open-Drain Open-Drain
1 X CMOS, Tristatable Not Available

10.2.4 Six Ready IN signals

The 100- and 128-pin FX2 packages bring out all six Ready inputs, RDY[5:0]. The 56-pin package
brings out two of these signals, RDY[1:0].

The RDY inputs can be sampled synchronously or asynchronously. When the GPIF is in asynchro-
nous mode (SAS=1), the RDY inputs are unavoidably delayed by a small amount (approximately
24 ns at 48 MHz IFCLK). In other words, when the GPIF “looks” at a RDY input, it actually “sees”
the state of that input 24 ns ago.

10.2.5 Nine GPIF Address OUT signals

Nine GPIF address lines, GPIFADR[8:0], are available. If the GPIF address lines are configured as
outputs, writing to the GPIFADRH:L registers drives these pins immediately. The GPIF engine can
then increment them under control of the Waveform Descriptors. The GPIF address lines can be
tristated by clearing the associated PORTXCFG bits and OEXx bits to 0 (see Section 13.3.3, "Port C
Alternate Functions" and Section 13.3.4, "Port E Alternate Functions").

Chapter 10. General Programmable Interface (GPIF) Page 10-7

EZ-USB FX2 Technical Reference Manual

10.2.6 Three GSTATE OUT signals

Three GPIF State lines, GSTATE[2:0], are available as an alternate configuration of PORTE[2:0].
These default to general-purpose inputs; setting GSTATE (IFCONFIG.2) to 1 selects the alternate
configuration and overrides PORTECFG[2:0] bit settings.

The GSTATE[2:0] pins output the current GPIF State number; this feature is typically used only
while debugging GPIF waveforms.

10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE =0

When the FX2 is configured for GPIF Master mode, PORTB is always configured as FD[7:0].

If any of the WORDWIDE bits (EPXFIFOCFG.0) are set to 1, PORTD is automatically configured
as FD[15:8]. If all the WORDWIDE bits are cleared to 0, PORTD is available for general-purpose
I/0.

10.2.8 Byte Order for 16-bit GPIF Transactions

Data is sent over USB in packets of 8-bit bytes, not 16-bit words. When the FIFO Data bus is 16
bits wide, the first byte in every pair sent over USB is transferred over FD[7:0] and the second byte
is transferred over FD[15:8].

10.2.9 Interface Clock (IFCLK)

The GPIF interface can be clocked from either an internal or an external source. The FX2's inter-
nal clock source can be configured to run at either 30 or 48 MHz, and it can optionally be output on
the IFCLK pin. If the FX2 is configured to use an external clock source, the IFCLK pin can be
driven at any frequency between 5 MHz and 48 MHz. On power-on reset, the FX2 defaults to the
internal source at 48 MHz, normal polarity, with the IFCLK output disabled. See Figur e10-4.

IFCONFIG.7 selects between internal and external sources: 0 = external, 1 = internal.

IFCONFIG.6 selects between the 30- and 48-MHz internal clock: 0 = 30 MHz, 1 = 48 MHz. This bit
has no effect when IFCONFIG.7 = 0.

IFCONFIG.5 is the output enable for the internal clock source: 0 = disable, 1 = enable. This bit has
no effect when IFCONFIG.7 = 0.

IFCONFIG.4 inverts the polarity of the interface clock (whether it's internally or externally
sourced): 0 = normal, 1 = inverted. IFCLK inversion can make it easier to interface the FX2 with
certain external circuitry; Figure 10-5, for example, demonstrates the use of IFCLK inversion in
order to ensure a long-enough setup time for reading peripheral signals.

Page 10-8 EZ-USB FX2 Technical Reference Manual v2.1

iiﬁ‘-’fi?l'{r{.’-}ﬁ
NG

When IFCLK is configured as an input, the minimum external frequency that can be applied to it is
5 MHz.

IFCFG.6
IFCFG.4 IFCFG.5

30 MHz — %}
48 MHz — 1 0

4i>o\ 1 ‘

. IFCLK
IFCFG.7 Pin
IFCFG.4
Internal 1
IFCLK <—i 0 <]

Signal 1 O@

Figure 10-4. IFCLK Configuration

Internal IFCLK Signal ﬂ ﬂ ‘
Inverted IFCLK Output ‘ ‘ ﬂ

Peripheral Signalj
Signal - Signal

Asserted M Sampled
t

S

Figure 10-5. Satisfying Setup Timing by Inverting the IFCLK Output

Chapter 10. General Programmable Interface (GPIF) Page 10-9

EZ-USB FX2 Technical Reference Manual

10.2.10 Connecting GPIF Signal Pins to Hardware

The first step in creating the interface between the FX2's GPIF and an external peripheral is to
define the hardware interconnects.

1.

Choose IFCLK settings. Decide whether to use an asynchronous or synchronous interface.
If synchronous, choose either the internal or external interface clock. If internal, choose either
30 or 48 MHz; if external, ensure that the frequency of the external clock is in the range 5-48
MHz.

Determine the proper FIFO Data Bus size. If the data bus for the interface is 8 bits wide, use
the FD[7:0] pins and set WORDWIDE=0. If the data bus for the interface is 16 bits wide, use
FD[15:0] and set WORDWIDE=1.

Assign the CTLx signals to the interface. Make a list of all interface signals to be driven
from the GPIF to the peripheral, and assign them to the CTL[5:0] inputs. If there are more out-
put signals than available CTL outputs, non-GPIF I/O signals must be driven manually by FX2
firmware. In this case, the CTLx outputs should be assigned only to signals that must be
driven as part of a data transaction.

Assign the RDYn signals to the interface. Make a list of all interface signals to be driven
from the peripheral to the GPIF, and assign them to the RDY[5:0] inputs. If there are more
input signals than available RDY inputs, non-GPIF 1/O signals must be sampled manually by
FX2 firmware. In this case, the RDYn inputs should be used only for signals that must be sam-
pled as part of a data transaction.

Determine the proper GPIF Address connections. If the interface uses an Address Bus,
use the GPIFADRJ8:0] signals for the least significant bits, and other non-GPIF 1/O signals for
the most significant bits. If the address pins are not needed (as when, for instance, the periph-
eral is a FIFO) they may be left unconnected.

10.2.11 Example GPIF Hardware Interconnect

The following example illustrates the hardware connections that can be made for a standard inter-
face to a 27C256 EPROM.

Table 10-4. Example GPIF Hardware Interconnect

Step Result Connection Made
. Choose IFCLK settings. | Internal IFCLK, 48MHz, Async, GPIF. No connection.
2. Determine proper FIFO | 8 bits from the EPROM. FD[7:0] to D[7:0]. Firmware
Data Bus size. writes WORDWIDE=0.
. Assign CTLx signals to | CS and OE are inputs to the EPROM. | CTLOto CS.
the interface. CTL1to OE.
. Assign RDYn signalsto | 27C256 EPROM has no No connection.
the interface. output ready/wait signals.
. Determine the proper 16 bits of address. GPIFADRI[8:0] to A[8:0] and
GPIFADR connections. other 1/O pins to A[15:9].

The process is the same for larger, more-complicated interfaces.

Page 10-10 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

10.3 Programming the GPIF Waveforms

Each GPIF Waveform Descriptor can define up to 7 States. In each State, the GPIF can be pro-
grammed to:

e Drive (high or low) or float the CTL outputs

e Sample or drive the FIFO Data bus

* Increment the value on the GPIF Address bus

e Increment the pointer into the current FIFO

» Trigger a GPIFWF (GPIF Waveform) interrupt

Additionally, each State may either sample any two of the following:

* The RDYx input pins
e AFIFOflag
* The INTRDY (internal RDY) flag
» The Transaction-Count-Expired flag

then AND, OR, or XOR the two terms and branch on the result to any State
or:

» Delay a specified number [1-256] of IFCLK cycles

States which sample and branch are called “Decision Points” (DPs); States which don't are called
“Non-Decision Points” (NDPs).

A {AND,
(A LFunc B) OR,

XOR}

Event CPU [GPIF
. INTRDY bit o—>
Y| GPIFWF ISR| <+——e
1 State 7
and (reserved)
X=Y-1 GPIF State Machine Firmware Hooks

(up to 7 programmable states)

Figure 10-6. GPIF State Machine Overview

Chapter 10. General Programmable Interface (GPIF) Page 10-11

EZ-USB FX2 Technical Reference Manual

10.3.1 The GPIF Registers

Two blocks of registers control the GPIF state machine:

* GPIF Configuration Registers — These registers configure the general settings and
report the status of the interface. Refer to Chapter 15, "Registers," and the remainder of
this chapter for detalils.

 Waveform Registers — These registers are loaded with the Waveform Descriptors that
configure the GPIF state machine; there are a total of 128 bytes located at addresses
O0xE400 to OXE47F. It is strongly recommended that the GPIFTool utility be used to create
Waveform Descriptors.

GPIF transactions cannot be initiated until the Configuration Registers and Waveform Registers
are loaded by FX2 firmware.

Access to the waveform registers is only allowed while the FX2 is in GPIF mode (i.e., IFCFG1:0 =
10). The waveform registers may only be written while the GPIF engine is halted (i.e., DONE = 1).

If it's desired to dynamically reconfigure Waveform Descriptors, this may be accomplished by writ-
ing just the bytes which change; it's not necessary to reload the entire set of Waveform Descrip-
tors in order to modify only a few bytes.

10.3.2 Programming GPIF Waveforms

The “programs” for GPIF waveforms are the Waveform Descriptors, which are stored in the Wave-
form Registers by FX2 firmware.

The FX2 can hold up to four Waveform Descriptors, each of which can be used for one of four
types of transfers: Single Write, Single Read, FIFO Write, or FIFO Read. By default, one Wave-
form Descriptor is assigned to each transfer type, but it's not necessary to retain that configuration;
all four Waveform Descriptors could, for instance, be configured for FIFO Write usage (see the
GPIFWFSELECT register in Chapter 15 "Registers").

Each Waveform Descriptor consists of up to seven 32-bit State Instructions that program key tran-
sition points for GPIF interface signals. There's a one-to-one correspondence between the State
Instructions and the GPIF state-machine States. Among other things, each State Instruction
defines the state of the CTLx outputs, the state of FD[15:0], the use of the RDYn inputs, and the
behavior of GPIFADR][8:0].

Transitions from one State to another always happen on a rising edge of the IFCLK, but the GPIF
may remain in one State for many IFCLK cycles.

10.3.2.1 The GPIF IDLE State

A Waveform consists of up to seven programmable States, numbered SO to S6, and one special
Idle State, S7. A Waveform terminates when the GPIF program branches to its Idle State.

Page 10-12 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

To complete a GPIF transaction, the GPIF program must branch to the IDLE State, regardless of
the State that the GPIF program is currently executing. For example, a GPIF Waveform might be
defined by a program which contained only 2 programmed States, SO and S1. The GPIF program
would branch from S1 (or S0) to S7 when it wished to terminate.

The state of the GPIF signals during the Idle State is determined by the contents of the
GPIFIDLECS and GPIFIDLECTL registers.

Once a waveform is triggered, another waveform may not be started until the first one terminates.
Termination of a waveform is signaled through the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) or,
optionally, through the GPIFDONE interrupt.

* If DONE = 0, the GPIF is busy generating a Waveform.

» If DONE =1, the GPIF is done (GPIF is in the Idle State) and ready for firmware to start
the next GPIF transaction.
NG

Important: With one exception (writing to the GPIFABORT register in order to force the current
waveform to terminate) it is illegal to write to any of the GPIF-related registers (including the Wave-
form Registers) while the GPIF is busy. Doing so will cause indeterminate behavior likely to result
in data corruption.

10.3.2.1.1 GPIF Data Bus During IDLE

During the Idle State, the GPIF Data Bus (FD[15:0]) can be either driven or tristated, depending on
the setting of the IDLEDRYV bit (GPIFIDLECS.0):

e IfIDLEDRV = 0, the GPIF Data Bus is tristated during the Idle State.

« IfIDLEDRYV =1, the GPIF Data Bus is actively driven during the Idle State, to the value last
placed on the bus by a GPIF Waveform.

10.3.2.1.2 CTL Outputs During IDLE
During the IDLE State, the state of CTL[5:0] depends on the following register bits:

e TRICTL (GPIFCTLCFG.7), as described in Section 10.2.3.1, "Control Output Modes".
e« GPIFCTLCFGI5:0]
e GPIFIDLECTL[5:0].

The combination of these bits defines CTL5:0 during IDLE as follows:

e If TRICTL is 0, GPIFIDLECTL][5:0] directly represent the output states of CTL5:0 during
the IDLE State. The GPIFCTLCFG[5:0] bits determine whether the CTL5:0 outputs are
CMOS or open-drain: If GPIFCTLCFG.x =0, CTLx is CMOS; if GPIFCTLCFG.x = 1, CTLX
is open-drain.

Chapter 10. General Programmable Interface (GPIF) Page 10-13

EZ-USB FX2 Technical Reference Manual

e If TRICTL is 1, GPIFIDLECTL][7:4] are the output enables for the CTL[3:0] signals, and
GPIFIDLECTL[3:0] are the output values for CTL[3:0]. CTL4 and CTL5 are unavailable in

this mode.

Table 10-5 illustrates this relationship.

Table 10-5. Control Outputs (CTLn) During the IDLE State

TRICTL Control Output Output State Output Enable

CTLO GPIFIDLECTL.O
CTL1 GPIFIDLECTL.1 N/A

0 CTL2 GPIFIDLECTL.2 (CTL Outputs are always
CTL3 GPIFIDLECTL.3 enabled when TRICTL = 0)
CTL4 GPIFIDLECTL.4
CTL5 GPIFIDLECTL.5
CTLO GPIFIDLECTL.O GPIFIDLECTL.4
CTL1 GPIFIDLECTL.1 GPIFIDLECTL.5

1 CTL2 GPIFIDLECTL.2 GPIFIDLECTL.6
CTL3 GPIFIDLECTL.3 GPIFIDLECTL.7
CTL4 N/A
CTL5 (CTL4 and CTLS5 are not available when TRICTL = 1)

10.3.2.2 Defining States

Each Waveform is made up of a number of States, each of which is defined by a 32-bit State
Instruction. Each State can be one of two basic types: a Non-Decision Point (NDP) or a Decision

Point (DP).

For “write” waveforms, the data bus is either driven or tristated during each State. For “read” wave-
forms, the data bus is either sampled/stored or not sampled during each State.

10.3.2.2.1 Non-Decision Point (NDP) States

For NDP States, the control outputs (CTLX) are defined by the GPIF instruction to be either 1, 0, or
tristated during the entire State. NDP States have a programmable fixed duration in units of IFCLK

cycles.

Figure 10-7 illustrates the basic concept of NDP States. A write waveform is shown, and for sim-
plicity all the States are shown with equal spacing. Although there are a total of six programmable
CTL outputs, only one (CTLO) is shown in Figure 10-7.

Page 10-14

EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

so . st . s2 . s3 . s4& - S5 S6
GADR[8:0] A
FD[15:0] z ' I VALD | ! 1 I z
CTLO

Figure 10-7. Non-Decision Point (NDP) States

Referring to Figure 10-7:

In State O:
e FD[7:0] is programmed to be tristated.
e CTLO is programmed to be driven to a logic 1.

In State 1:
e FD[7:0] is programmed to be driven.
e CTLO is still programmed to be driven to a logic 1.

In State 2:
e FD[7:0] is programmed to be driven.
e CTLO is programmed to be driven to a logic O.

In State 3:
e FD[7:0] is programmed to be driven.
e CTLO is still programmed to be driven to a logic O.

In State 4:
e FD[7:0] is programmed to be driven.
e CTLO is programmed to be driven to a logic 1.

In State 5:
e FD[7:0] is programmed to be tristated.
e CTLO is still programmed to be driven to a logic 1.

In State 6:

e FD[7:0] is programmed to be tristated.
e CTLO is still programmed to be driven to a logic 1.

Chapter 10. General Programmable Interface (GPIF) Page 10-15

EZ-USB FX2 Technical Reference Manual

Since all States in this example are coded as NDPs, the GPIF automatically branches from the
last State (S6) to the Idle State (S7). This is the State in which the GPIF waits until the next GPIF
waveform is triggered by the firmware.

States 2 and 3 in the example are identical, as are States 5 and 6. In a real application, these
would probably be combined (there’s no need to duplicate a State in order to “stretch” it, since
each NDP State can be assigned a duration in terms of IFCLK cycles). If fewer than 7 States were
defined for this waveform, the Idle State wouldn’t automatically be entered after the last pro-
grammed State; that last programmed State’s State Instruction would have to include an explicit
branch to the Idle State.

10.3.2.2.2 Decision Point (DP) States

Any State can be designated as a Decision Point (DP). A DP allows the GPIF engine to sample
two signals — each of the “two” can be the same signal, if desired — perform a boolean operation
on the sampled values, then branch to other States (or loop back on itself, remaining in the current
State) based on the result.

If a State Instruction includes a control task (advance the FIFO pointer, increment the GPIFADR
address, etc.), that task is always executed once upon entering the State, regardless of whether
the State is a DP or NDP. If the State is a DP that loops back on itself, however, it can be pro-
grammed to re-execute the control task on every loop.

With a Decision Point, the GPIF can perform simple tasks (wait until a RDY line is low before con-
tinuing to the next State, for instance). Decision point States can also perform more-complex tasks
by branching to one State if the operation on the sampled signals results in a logic 1, or to a differ-
ent State if it results in a logic 0.

In each State Instruction, the two signals to sample can be selected from any of the following:

» the six external RDY signals (RDY0-RDY5)

» one of the current FIFO'’s flags (PF, EF, FF)

« the INTRDY bit in the READY register

* a“Transaction Count Expired” signal (which replaces RDY5)

The State Instruction also specifies a logic function (AND, OR, or XOR) to be applied to the two
selected signals. If it's desired to act on the state of only one signal, the usual procedure is to
select the same signal twice and specify the logic function as AND.

The State Instruction also specifies which State to branch to if the result of the logical expression
is 0, and which State to branch to if the result of the logical expression is 1.

Below is an example waveform created using one Decision Point State (State 1); Non-Decision
Point States are used for the rest of the waveform.

Page 10-16 EZ-USB FX2 Technical Reference Manual v2.1

so s1 . s2 . s3 . s4 - s5 ' s
GADRI[8:0] LA
FD[15:0] Loz I VALID | l 1 z

CTLO

RDYO

Figure 10-8. One Decision Point: Wait States Inserted Until RDYO Goes Low

so . st sz . s3 . s4 S5 S6
GADR[8:0] A
FD[15:0] z I VALID I z
CTLO
RDYO

Figure 10-9. One Decision Point: No Wait States Inserted:
RDYO is Already Low at Decision Point 11

In Figure 10-8 and Figure 10-9, there is a single Decision Point defined as State 1. In this example,
the input ready signal is assumed to be connected to RDYO0, and the State Instruction for S1 is
configured to branch to State 2 if RDYO is a logic 0 or to branch to State 1 (i.e., loop indefinitely) if

RDYO is a logic 1.

Chapter 10. General Programmable Interface (GPIF) Page 10-17

EZ-USB FX2 Technical Reference Manual

In Figure 10-8, the GPIF remains in S1 until the RDYO signal goes low, then branches to S2.
Figure 10-9 illustrates the GPIF behavior when the RDYO signal is already low when S1 is
entered: The GPIF branches to S2.

#
Although it appears in Figure 10-8 that the GPIF branches immediately from State 0 to State 2,
this isn't exactly true. Even if RDYO is already low before the GPIF enters State 1, the GPIF

spends one IFCLK cycle in State 1.

10.3.3 Re-Executing a Task Within a DP State

In the simple DP examples shown earlier in this chapter, a control task (e.g., output a word on
FD[15:0] and increment GPIFADR[8:0]) executes only once at the start of a DP State, then the
GPIF waits, sampling a RDYx input repeatedly until that input “tells” the GPIF to branch to the next
State.

The GPIF also has the capability to re-execute the control task every time the RDYX input is sam-

pled; this feature can be used to burst a large amount of data without passing through the Idle
State.

Page 10-18 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

I LA LA | L] |

GADR[B:O]_ A A+l I A+2 I A+3
FD[7:0]: D D+1 I D+2 I D+3
cTLo
RDYO |

DP, transitions to

v v'\ next interval when

NDP DP NDP terms are met

DP, using re-execute control
task feature... to loop on to
itself until terms are met

Figure 10-10. Re-Executing a Task within a DP State

State 0 1 2 3 4 5 6 7
AddrMode Same Val Inc Val Same Val SameVal SameVal SameVal Same Val
DataMode Activate Activate NO Data NO Data NO Data NO Data NO Data
NextData SameData NextData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 IF Wait 1 Wait 1 Wait 1 Wait 1 Wait 1
Term A RDYO
LFUNC AND
Term B RDYO
Branchl Then 2
Branch0O Else 1
Re-execute Yes
CTLO 1 0 1 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

Figure 10-11. GPIFTool Setup for the Waveform of Figure 10-10

Chapter 10. General Programmable Interface (GPIF) Page 10-19

EZ-USB FX2 Technical Reference Manual

Pk [] L L] L]

GADRI[8:0] A A+l

FD[7:0] D D+1

cTLO

RDYO | "
- v ¥ ot interval when

NDP DP NDP terms are met

DP, loop on to itself until terms
are met... control tasks execute
on rising edge transition into
DP only...

Figure 10-12. A DP State Which Does NOT Re-Execute the Task

State 0 1 2 3 4 5 6 7
AddrMode Same Val Inc Val Same Val SameVal SameVal SameVal Same Val
DataMode Activate Activate NO Data NO Data NO Data NO Data NO Data
NextData SameData NextData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 IF Wait 1 Wait 1 Wait 1 Wait 1 Wait 1
Term A RDYO
LFUNC AND
Term B RDYO
Branchl Then 2
Branch0 Else 1
Re-execute No
CTLO 1 0 1 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

Figure 10-13. GPIFTool Setup for the Waveform of Figure 10-12

Page 10-20 EZ-USB FX2 Technical Reference Manual v2.1

10.3.4 State Instructions

iﬁ'ﬂ*nrﬁs

Each State’s characteristics are defined by a 4-byte State Instruction. The four bytes are named
LENGTH / BRANCH, OPCODE, LOGIC FUNCTION, and OUTPUT.

Note that the State Instructions are interpreted differently for Decision Points (DP = 1) and Non-

Decision Points (DP = 0).

Non-Decision Point State Instruction (DP = 0)

LENGTH / BRANCH

Bit 7 Bit 6 Bit5 Bit 4 | Bit 3 | Bit 2 Bit 1 Bit0
Number of IFCLK cycles to stay in this State (0 = 256 cycles)
OPCODE
7 6 5 4 3 2 1 0
X X SGL GINT INCAD NEXT/ DATA DP=0
SGLCRC
LOGIC FUNCTION
7 6 5 | 4 | 3 | 2 1 0
Not Used
OUTPUT (if TRICTL Bit=1)

7 6 5 4 3 2 1 0
OE3 OE2 OE1l OEO CTL3 CTL2 CTL1 CTLO
OUTPUT (if TRICTL Bit =0)

7 6 5 4 3 2 1 0
X X CTL5 CTL4 CTL3 CTL2 CTL1 CTLO

Chapter 10. General Programmable Interface (GPIF) Page 10-21

EZ-USB FX2 Technical Reference Manual

Decision Point State Instruction (DP =1)

LENGTH / BRANCH

Bit 7 Bit 6 Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0
Re-Execute X BRANCHON1 BRANCHON1
OPCODE
7 6 5 4 3 2 1 0
X X SGL GINT INCAD NEXT/ DATA DP=1
SGLCRC
LOGIC FUNCTION
7 6 5 4 3 2 1 0
LFUNC TERMA TERMB
OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0
OE3 OE2 OE1 OEO CTL3 CTL2 CTL1 CTLO
OUTPUT (if TRICTL Bit = 0)

7 6 5 4 3 2 1 0
X X CTL5 CTL4 CTL3 CTL2 CTL1 CTLO

LENGTH / BRANCH Register: This register’s interpretation depends on the DP bit:

» For DP = 0 (Non-Decision Point), this is a LENGTH field; it holds the fixed duration of this
State in IFCLK cycles. A value of 0 is interpreted as 256 IFCLK cycles.

e For DP =1 (Decision Point), this is a BRANCH field; it specifies the State to which the
GPIF will branch:

BRANCHON1:

BRANCHONO:

Page 10-22

Specifies the State to which the GPIF will branch if the logic expression
evaluates to 1.

Specifies the State to which the GPIF will branch if the logic expression
evaluates to 0.

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

SGL Bit: has no effect in a Single-Read or Single-Write waveform. In a FIFO waveform, it
specifies whether a single-data transaction should occur (from/to the SGLDATAH:L or
UDMA_CRCH:L registers), even in a FIFO-Write or FIFO-Read transaction. See also “NEXT/
SGLCRC”, below.

OPCODE Register: This register sets a number of State characteristics.

1 = Use SGLDATAH:L or UDMA_CRCH.L.
0 = Use the FIFO.

GINT Bit: specifies whether to generate a GPIFWF interrupt during this State.

1 = Generate GPIFWF interrupt (on INT4) when this State is reached.
0 = Do not generate interrupt.

INCAD Bit: specifies whether to increment the GPIF Address lines GPIFADR][8:0].

1 = Increment the GPIFADR[8:0] bus at the beginning of this State.
0 = Do not increment the GPIFADR[8:0] signals.

NEXT/SGLCRC Bit:
If SGL = 0, specifies whether the FIFO should be advanced at the start of this State.
1 = Move the next data in the OUT FIFO to the top.
0 = Do not advance the FIFO.
The NEXT bit has no effect when the waveform is applied to an IN FIFO.

If SGL = 1, specifies whether data should be transferred to/from SGLDATAH:L or
UDMA_CRCHE:L. See also “SGL Bit”, above.

1 =Use UDMA_CRCH:L.
0 = Use SGLDATAH:L.

DATA Bit: specifies whether the FIFO Data bus is to be driven, tristated, or sampled.
During a write:
1 = Drive the FIFO Data bus with the output data.
0 = Tristate (don't drive the bus).
During a read:
1 = Sample the FIFO Data bus and store the data.
0 = Don’t sample the data bus.

DP Bit: indicates whether the State is a DP or NDP:

1 = Decision Point.
0 = Non-Decision Point.

Chapter 10. General Programmable Interface (GPIF) Page 10-23

EZ-USB FX2 Technical Reference Manual

LOGIC FUNCTION Register: This register is used only in DP State Instructions. It specifies the
inputs (TERMA and TERMB) and the Logic Function (LFUNC) to apply to those inputs. The result
of the logic function determines the State to which the GPIF will branch (see also “LENGTH /
BRANCH Register”, above).

TERMA and TERMB bits:

= 000: RDYO

=001: RDY1

= 010: RDY2

=011: RDY3

= 100: RDY4

=101: RDY5 (or Transaction-Count Expiration, if GPIFREADYCFG.5 = 1)
=110: FIFO flag (PF, EF, or FF), preselected via EPXGPIFFLGSEL

= 111: INTRDY (Bit 7 of the GPIFREADYCFG register)

LFUNC bits:
=00: AANDB
=01: AORB

=10: AXOR B
=11: AAND B

The TERMA and TERMB inputs are sampled at each rising edge of IFCLK. The logic function
is applied, then the branch is taken on the next rising edge.

This register is meaningful only for DP Instructions; when the DP bit of the OPCODE register
is cleared to 0, the contents of this register are ignored.

OUTPUT Register: This register controls the state of the 6 Control outputs (CTL5:0) during the
entire State defined by this State Instruction.

OEn Bit: If TRICTL = 1, specifies whether the corresponding CTLx output signal is tristated.

1 = Drive CTLx
0 = Tristate CTLx

CTLn Bit: specifies the state to set each CTLx signal to during this entire State.
1 = High level

If the CTLx bit in the GPIFCTLCFG register is set to 1, the output driver will be an
open-drain.

If the CTLx bit in the GPIFCTLCFG register is set to 0, the output driver will be driven
to CMOS levels.

0 = Low level

Page 10-24 EZ-USB FX2 Technical Reference Manual v2.1

;Eﬁ'ltﬁj:—;

Up to four different Waveforms can be defined. Each Waveform Descriptor comprises up to 7 State
Instructions which are loaded into the Waveform Registers as defined in this section.

10.3.4.1 Structure of the Waveform Descriptors

Table 10-6. Waveform Descriptor Addresses

&asvcifig:gnr Base XDATA Address
OXE400
1 OXE420
2 OXE440
3 OXE460

Within each Waveform Descriptor, the State Instructions are packed as described in Table 10-7,
“Waveform Descriptor 0 Structure". Waveform Descriptor 0 is shown as an example. The other
Waveform Descriptors follow exactly the same structure but at higher XDATA addresses.

Table 10-7. Waveform Descriptor 0 Structure

XDATA
Address

0xE400 LENGTH / BRANCH [0] (LENGTH / BRANCH field of State 0 of Waveform Program 0)

0xE401 LENGTH / BRANCH [1] (LENGTH / BRANCH field of State 1 of Waveform Program 0)

0xE402 LENGTH / BRANCH [2] (LENGTH / BRANCH field of State 2 of Waveform Program 0)

O0xE403 LENGTH / BRANCH [3] (LENGTH / BRANCH field of State 3 of Waveform Program 0)

OxE404 LENGTH / BRANCH [4] (LENGTH / BRANCH field of State 4 of Waveform Program 0)

0xE405 LENGTH / BRANCH [5] (LENGTH / BRANCH field of State 5 of Waveform Program 0)

OxE406 LENGTH / BRANCH [6] (LENGTH / BRANCH field of State 6 of Waveform Program 0)

0xE407 Reserved

O0xE408 OPCODE[0] (OPCODE field of State 0 of Waveform Program 0)

0xE409 OPCODE[1] (OPCODE field of State 1 of Waveform Program 0)

OxE40A OPCODE[2] (OPCODE field of State 2 of Waveform Program 0)

OxE40B OPCODE[3] (OPCODE field of State 3 of Waveform Program 0)

0xE40C OPCODE[4] (OPCODE field of State 4 of Waveform Program 0)

0xE40D OPCODE[5] (OPCODE field of State 5 of Waveform Program 0)

OxE40E OPCODE[6] (OPCODE field of State 6 of Waveform Program 0)

OxXE40F Reserved

O0xE410 OUTPUTI0] (OUTPUT field of State 0 of Waveform Program 0)

OxE411 OUTPUTI1] (OUTPUT field of State 1 of Waveform Program 0)

OxE412 OUTPUTI[2] (OUTPUT field of State 2 of Waveform Program 0)

OxE413 OUTPUTI3] (OUTPUT field of State 3 of Waveform Program 0)

OxE414 OUTPUTI[4] (OUTPUT field of State 4 of Waveform Program 0)

OxE415 OUTPUTI5] (OUTPUT field of State 5 of Waveform Program 0)

OxE416 OUTPUTI6] (OUTPUT field of State 6 of Waveform Program 0)

0xE417 Reserved

OxE418 LOGIC FUNCTION[0] (LOGIC FUNCTION field of State 0 of Waveform Program 0)

OxE419 LOGIC FUNCTION[1] (LOGIC FUNCTION field of State 1 of Waveform Program 0)

Contents

Chapter 10. General Programmable Interface (GPIF) Page 10-25

EZ-USB FX2 Technical Reference Manual

Table 10-7. Waveform Descriptor O Structure (Continued)

OxE41A LOGIC FUNCTION[2] (LOGIC FUNCTION field of State 2 of Waveform Program 0)
OxE41B LOGIC FUNCTION[3] (LOGIC FUNCTION field of State 3 of Waveform Program 0)
OxE41C LOGIC FUNCTION[4] (LOGIC FUNCTION field of State 4 of Waveform Program 0)
OxE41D LOGIC FUNCTION[5] (LOGIC FUNCTION field of State 5 of Waveform Program 0)
OxE41E LOGIC FUNCTION[6] (LOGIC FUNCTION field of State 6 of Waveform Program 0)
OXE41F Reserved

10.4 Firmware

Table 10-8. Registers Associated with GPIF Firmware

GPIFTRIG (SFR) EPXCFG
GPIFSGLDATH (SFR) EPXFIFOCFG
GPIFSGLDATLX (SFR) EPxAUTOINLENH/L
GPIFSGLDATLNOX (SFR) EPXFIFOPFHIL
EPXGPIFTRIG EP2468STAT(SFR)
XGPIFSGLDATH EP24FIFOFLGS(SFR)
XGPIFSGLDATLX EP6BFIFOFLGS(SFR)
XGPIFSGLDATLNOX EPXCS
GPIFABORT EPXFIFOFLGS
GPIFIE
GPIFIRQ EPXFIFOIE
GPIFTCB3 EPXFIFOIRQ
GPIFTCB2 INT2IVEC
GPIFTCBI INT4IVEC
GPIFTCO INTSETUP

IE (SFR)
EPxBCHIL P (SFR)
EPXFIFOBCHIL INT2CLR(SFR)
EPXFIFOBUF INTACLR(SFR)
INPKTEND EIE (SFR)

EXIF (SFR)

The “x” in these register names represents 2, 4, 6, or 8; endpoints 0 and 1 are not associated with
the Slave FIFOs.

The GPIFTool utility, distributed with the Cypress EZ-USB FX2 Development Kit, generates C
code which may be linked with the rest of an application’s source code. The GPIFTool output
includes the following basic GPIF framework and functions:

Page 10-26

EZ-USB FX2 Technical Reference Manual v2.1

TD Init():

Goiflnit(); // Configures GPIF from GPI FTool

/] TODO. configure other endpoints, etc. here

/1 TODO arm OUT buffer(s) here

/1 setup INT4 as internal
/1 using INTACLR (SFR), automatically enabl ed
/11 NTSETUP | = 0x03; //Enable | NT4 Autovectoring
/| SYNCDELAY;

/1 GPI FIE = 0x03;
/| SYNCDELAY;
/1 EIE | = 0x04;

/] TODO. configure GPIF interrupt(s) to neet your
void Goiflnit(void)
{
BYTE i ;

/] Registers which require a synchronization del ay,

/1 FlI FORESET FI FOPI NPOLAR
/11 NPKTEND OUTPKTEND

/1 EPxBCH L REVCTL

/1 GPIFTCB3 GPl FTCB2

/1 GPlIFTCB1 GPI FTCBO

/'l EPxFI FOPFH: L
/'l EPxFI FOCFG

EPXAUTO NLENH: L
EPxGPI FFLGSEL

/1 Enable INT4 | SR, EIE. 2(El EX4)=1

i&'n'::-l'-:r-:e_:s

gener at ed wavef orm data

source for GPIF interrupts

/1 Enabl e GPI FDONE and GPI FWF interrupt(s)

needs here

see section 15.14

/1 Pl NFLAGSxx EPxFI FO RQ

/1 EPxFI FO E GPl FI RQ

/1 GPIFIE GPl FADRH: L

/1 UDMACRCH: L EPXGPI FTRI G

/'l GPIFTRI G

/1 Note: The pre-REVE EPxGPI FTCH L register are affected, as well...
I ...these have been replaced by GPI FTC[B3: BO] registers

/1 8051 doesn't have access to waveform nmenories
/1 the part is in GPIF node.

| FCONFI G = OxCE;

/'l 1 FCLKSRC=1 , FIFGs executes on internal

"til

clk source

Il xMHz=1 , 48MHz internal clk rate

/1 | FCLKOE=0 , Don't drive IFCLK pin signal at 48MHz

/1 1 FCLKPOL=0 , Don't invert IFCLK pin signal frominternal clk
/1 ASYNC=1 , master sanples asynchronous

/'l GSTATE=1 , Drive GPIF states out on PORTE[2:0], debug W

/1 1 FCFF 1: 0] =10, FX2 in GPIF master node

GPl FABORT = OxFF; // abort any wavefornms pendi ng
GPl FREADYCFG = InitDatal O];

GPI FCTLCFG = I nitData] 1];

GPI FIDLECS = InitData] 2];

GPI FIDLECTL = InitDatal 3];

Chapter 10. General Programmable Interface (GPIF)

Page 10-27

EZ-USB FX2 Technical Reference Manual

GPI FWFSELECT = InitData[5 |;
GPI FREADYSTAT = InitData[6 |;

/'l use dual autopointer feature...

AUTOPTRSETUP = 0x07; /1 inc both pointers,
/1 ...warning: this introduces pdata hol e(s)
/1 ...at EB67B (XAUTCDAT1l) and E67C (XAUTCDAT2)

/'l source
APTR1IH = MSB(&WaveData);
APTRIL = LSB(&WaveData);

/'l destination
AUTOPTRH2 = OxE4;
AUTOPTRL2 = 0x00;

Il transfer

for (i = 0x00; i < 128; i++)
{

EXTAUTODAT2 = EXTAUTCDATL;
}

/1 Configure GPIF Address pins, output initial value,
PORTCCFG = OxFF; /1 [7:0] as alt. func. GPIFADR[7:0]
CEC = OxFF; /1 and as outputs
PORTECFG | = 0x80; /1 [8] as alt. func. GPlI FADR] 8]
CEC | = 0x80; /1 and as out put

/1 ...OR .. tri-state GPI FADR[8: 0] pins
/1 PORTCCFG = 0x00; // [7:0] as port I/O

/1 OEC = 0x00; /1 and as inputs
/'l PORTECFG &= Ox7F; // [8] as port |I/O
Il CEC &= OxT7F; /1 and as input

/1 GPIF address pins update when GPI FADRH L witten

SYNCDELAY; /1

GPl FADRH = 0x00; /1l bits[7:1] always O

SYNCDELAY; 11

GPl FADRL = 0x00; /1 point to PERI PHERAL address 0x0000

}

#i f def TESTI NG GPI F
/1 TODG You may add additional code bel ow.

void Oherlnit(void)

{ I/ interface initialization
Il ...see TD_Init();

}

/1 Set Address GPIFADR[8: 0] to PERI PHERAL
voi d Peri pheral _Set Address(WORD gaddr)

{

SYNCDELAY; 11

GPl FADRH = gaddr >> 8;

SYNCDELAY; 11

GPI FADRL = (BYTE)gaddr; // setup GPIF address
}

Page 10-28 EZ-USB FX2 Technical Reference Manual v2.1

/1 Set EP2GPIF Transaction Count
voi d Peri pheral _Set EP2GPI FTC(WORD xfrcnt)

{
SYNCDELAY; /1
EP2GPI FTCH = xfrcnt >> 8; // setup transaction count
SYNCDELAY; /1
EP2GPI FTCL = (BYTE)xfrcnt;
}

/1 Set EPAGPIF Transaction Count
voi d Peri pheral _Set EPAGPI FTC(WORD xfrcnt)

{
SYNCDELAY; /1
EPAGPI FTCH = xfrcnt >> 8; // setup transaction count
SYNCDELAY; /1
EPAGPI FTCL = (BYTE)xfrcnt;
}

/1 Set EP6GPIF Transaction Count
voi d Peri pheral _Set EP6GPI FTC(WORD xfrcnt)

{
SYNCDELAY; /1
EP6GPI FTCH = xfrcnt >> 8; // setup transaction count
SYNCDELAY; /1
EP6GPI FTCL = (BYTE)xfrcnt;
}

/1 Set EP8GPIF Transaction Count
voi d Peripheral _Set EP8GPI FTC(WORD xfrcnt)

{
SYNCDELAY; 11
EP8GPI FTCH = xfrcnt >> 8; // setup transaction count
SYNCDELAY; 11
EP8GPI FTCL = (BYTE)xfrcnt;
}

#define GPI F_FLGSELPF 0
#define GPI F_FLGSELEF 1
#defi ne GPI F_FLGSELFF 2

/1 Set EP2GPIF Decision Point FIFO Flag Sel ect (PF, EF, FF)
voi d Set EP2GP| FFLGSEL(WORD DP_FI FOFl ag)
{

}

EP2GPI FFLGSEL = DP_FI FOFI ag;

/1 Set EPAGPIF Decision Point FIFO Flag Sel ect (PF, EF, FF)
voi d Set EP4AGP| FFLGSEL(WORD DP_FI FOFl ag)

{
}

EPAGPI FFLGSEL = DP_FI FOFI ag;

/1 Set EP6GPIF Decision Point FIFO Flag Sel ect (PF, EF, FF)
voi d Set EP6GPI FFLGSEL(WORD DP_FI FOFl ag)

{
}

EP6GPI FFLGSEL = DP_FI FOFI ag;

Chapter 10. General Programmable Interface (GPIF)

e

CYPRESS

Page 10-29

EZ-USB FX2 Technical Reference Manual

Page 10-30

/1 Set EP8GPIF Decision Point FIFO Flag Sel ect (PF, EF, FF)
voi d Set EP8GP| FFLGSEL(WORD DP_FI FOFl ag)
{
EP8GPI FFLGSEL = DP_FI FOFI ag;
}

/1 Set EP2GPI F Programmabl e Fl ag STOP, overrides Transacti on Count
voi d Set EP2GPI FPFSTOP(void)
{

EP2GPI FPFSTOP = 0x01;

}

/1 Set EPAGPIF Programmabl e Fl ag STOP, overrides Transacti on Count
voi d Set EP4AGPI FPFSTOP(void)
{

EPAGPI FPFSTOP = 0x01;

}

/1 Set EP6GPIF Programmabl e Fl ag STOP, overrides Transacti on Count
voi d Set EP6GPI FPFSTOP(void)
{

EP6GPI FPFSTOP = 0x01;

}

/1 Set EP8GPIF Programmabl e Fl ag STOP, overrides Transacti on Count
voi d Set EP8CGPI FPFSTOP(void)
{

EP8GPI FPFSTOP = 0x01;

}

/1 wite single byte to PERI PHERAL, using GPIF
voi d Peripheral _SingleByteWite(BYTE gdata)

{
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 Done bit

{
}

XGPI FSGLDATLX = gdat a; /1 trigger GPIF
/1l ...single byte wite transaction

}

/1 wite single word to PERI PHERAL, using GPIF

voi d Peripheral _Singl eWwordWite(WORD gdata)

{
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 Done bit
{

}

/1 using register(s) in XDATA space
XGPlI FSGLDATH = gdata >> 8;
XGPlI FSGLDATLX = gdat a; /'l trigger GPIF
I/l ...single word wite transaction

}

/'l read single byte from PER PHERAL, using GPIF
voi d Peripheral _Singl eByt eRead(BYTE xdata *gdata)

EZ-USB FX2 Technical Reference Manual v2.1

{
static BYTE g_data = 0x00;

while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 Done bit

{
}
/'l using register(s) in XDATA space, dumy read
g_data = XGPlI FSGLDATLX; /'l trigger GPIF
/1 ...single byte read transaction
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 Done bit
{
}

/1 using register(s) in XDATA space,

*gdat a = XGPl| FSGLDATLNOX; Il ...GPIF reads byte from PERI PHERAL

}

/'l read single word from PERI PHERAL, using GPIF
voi d Peri pheral _Si ngl ewr dRead(WORD xdata *gdata)

{
BYTE g_data = 0x00;

while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 Done bit

{
}
/'l using register(s) in XDATA space, dunmy read
g_data = XGPI FSGLDATLX; /'l trigger GPIF
/1 ...single word read transaction

while(!'(GPIFTRIG & 0x80)) // poll GPIFTRI G 7 Done bit
{

}

/1 using register(s) in XDATA space, GPIF reads word from PERI PHERAL

*gdata = ((WORD) XGPI FSGLDATH << 8) | (WORD) XGPI FSGLDATLNOX;
}

#define GPIFTRIGAR O
#define GPI FTRIGRD 4

#define GPIF_EP2 0O
#define GPIF_EP4 1
#define GPIF_EP6 2
#define GPIF_EP8 3

/Il wite byte(s)/word(s) to PERI PHERAL, using GPIF and EPxFI FO
/1 if EPx WORDW DE=0 then write byte(s)

/1 if EPx WORDW DE=1 then wite word(s)

voi d Peripheral _FIFOWNite(BYTE FI FO_EpNum)

while(!'(GPIFTRIG & 0x80)) // poll GPIFTRI G 7 Done bit
{

Chapter 10. General Programmable Interface (GPIF)

i&'n'::-l'-:r-:e_:s

Page 10-31

EZ-USB FX2 Technical Reference Manual

}

/Il trigger FIFO wite transaction(s), using SFR
GPI FTRIG = FI FO EpNum // R/ We0, EP[1:0] =FI FO EpNum for EPx write(s)

}

/'l read byte(s)/word(s) from PERI PHERAL, using GPIF and EPxFI FO
/1 if EPx WORDW DE=0 then read byte(s)

/1 if EPx WORDW DE=1 then read word(s)

voi d Peri pheral _FlI FORead(BYTE FI FO_EpNum)

while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 GPIF Done bit
{

}

Il trigger FIFO read transaction(s), using SFR
GPI FTRIG = GPIFTRIGRD | FI FO_EpNum // R/ Wel, EP[1:0]=FI FO_EpNum for EPx read(s)

}

Page 10-32 EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

10.4.1 Single-Read Transactions

8051 XDATA GPIF Device Pins

* ED[7:0]

30/48MHz

IFCLK
5-48MHz

XGPIFSGLDATH/L |_GPIFADR[8:0]

W aveform Descriptors CTL[5:0]
WFO ¢RRYI5:0]
WF1
W

F2
WF3 GPIF

8051

XGPIFSGLDATLX
>

GPIF DONE

GPIFWF
8051 INTRDY >

* All EPx WORDWIDE bits must be cleared to 0 for 8-bit single transactions. If any of the EPx WORDWIDE bits
are set to 1, then single transactions will be 16 bits wide.

Figure 10-14. Firmware Launches a Single-Read Waveform, WORDWIDE=0

Chapter 10. General Programmable Interface (GPIF) Page 10-33

EZ-USB FX2 Technical Reference Manual

e LA LA LA LT

GADR[8:0] 0x00AB
FD[7:0] hi-z 0x80 hi-Z
CTLO
RDYO
v v v v
NDP NDP NDP NDP NDP NDP
i1 i2 i3 i4

Figure 10-15. Single-Read Transaction Waveform

State 0 1 2 3 4 5 6 7
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate NO Data NO Data NO Data NO Data
NextData SameData SameData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 2 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

Branch0

Re-execute
CTLO 1 1 0 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

Figure 10-16. GPIFTool Setup for the Waveform of Figure 10-15

Page 10-34 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

To perform a Single-Read transaction:

1.
2.
3.

Initialize the GPIF Configuration Registers and Waveform Descriptors.
Perform a dummy read of the XGPIFSGLDATLX register to start a single transaction.

Wait for the GPIF to indicate that the transaction is complete. When the transaction is com-
plete, the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) will be set to 1. If enabled, a GPIFDONE
interrupt will also be generated.

Depending on the bus width and the desire to start another transaction, the read data can be
retrieved from the XGPIFSGLDATH, XGPIFSGLDATLX, and/or the

XGPIFSGLDATLNOX register (or from the SFR-space copies of these registers):

In 16-bit mode only, the most significant byte, FD[15:8], of data is read from the
XGPIFSGLDATH register.

In 8- and 16-bit modes, the least significant byte of data is read by either:

* reading XGPIFSGLDATLX, which reads the least significant byte and starts another Sin-
gle-Read transaction.

« reading XGPIFSGLDATLNOX, which reads the least significant byte but does not start
another Single-Read transaction.

The following C program fragments (Figures 10-17 and 10-18) illustrate how to perform a Sin-
gle-Read transaction in 8-bit mode (WORDWIDE=0):

Chapter 10. General Programmable Interface (GPIF) Page 10-35

EZ-USB FX2 Technical Reference Manual

#def i ne PERI PHCS 0x00AB
#def i ne AOKAY 0x80

#def i ne BURSTMODE 0x0000
#define TRI STATE OxFFFF
#defi ne EVER ;;

/'l prototypes
void Guiflnit(void);

/1 Set Address GPI FADR[8:0] to PERI PHERAL
voi d Peripheral _Set Address(WORD gaddr)

{
i f(gaddr < 512)
{ /] drive GPIF address bus w gaddr
GPlI FADRH = gaddr >> 8;
SYNCDELAY;
GPI FADRL = (BYTE)gaddr; // setup GPIF address
}
el se
{ /] tristate GPIFADR[8:0] pins
PORTCCFG = 0x00; // [7:0] as port I/0O
CEC = 0x00; // and as inputs
PORTECFG &= Ox7F; [/ [8] as port I/0O
CEC &= Ox7F; // and as input
}
}

/'l read single byte from PERI PHERAL, using GPlIF
voi d Peripheral _Si ngl eByt eRead(BYTE xdata *gdata)

{
static BYTE g_data = 0x00;
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 Done bit
{
}
/'l using register(s) in XDATA space, dunmy read
g_data = XGPI FSGLDATLX; // to trigger GPIF single byte read transaction
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRI G 7 Done bit
{
}
/1 using register(s) in XDATA space, GPIF read byte from PERI PHERAL here
*gdat a = XGPlI FSGLDATLNOX;
}

Figure 10-17. Single-Read Transaction Functions

Page 10-36 EZ-USB FX2 Technical Reference Manual v2.1

iﬁﬂ-mﬂs

void TD_Init(void)
{
BYTE xdata peri ph_st at us;
Goiflnit(); // Configures GPIF from GPl FTool generated waveform data
// TODO configure other endpoints, etc. here
/1 TODO. arm OUT buffer(s) here
/1 setup INT4 as internal source for GPIF interrupts
/1 using INTACLR (SFR), automatically enabl ed
/ /1 NTSETUP | = 0x03; //Enable | NT4 Autovectoring
/ | SYNCDELAY;
/1 GPIFIE = 0x03; // Enable GPI FDONE and GPlI FWF interrupt(s)
/ | SYNCDELAY;
//EIE | = 0x04; // Enable INT4 ISR, EIE. 2(EI EX4)=1
/] TODO configure GPIF interrupt(s) to neet your needs here
/1 get status of peripheral function
Peri pher al _Set Address(PERI PHCS);
Peri pheral _Si ngl eByt eRead(&periph_status);
i f(periph_status == AOKAY)
{ Il set it and forget it
Peri pher al _Set Addr ess(BURSTMODE) ;
}
el se
{
Peri pher al _Set Addr ess(TRI STATE);
Housekeepi ng();
EZUSB _Di scon(TRUE); // Disconnect fromthe bus
for(EVER)
{ // do not xfr peripheral data
}
}
}

Figure 10-18. Initialization Code for Single-Read Transactions

Chapter 10. General Programmable Interface (GPIF) Page 10-37

EZ-USB FX2 Technical Reference Manual

10.4.2 Single-Write Transactions

8051

8051

XDATA

XGPIFSGLDATH/L

GPIF Device Pins

* ED[7:0]

XGPIFSGLDATLX

W aveform Descriptors

W FO

WF1
WF2
WF3

>

30/48MHz

IFCLK
5-48MHz

>

GPIF DONE

GPIFWF

8051 INTRDY

g

CLK

|_GPIFADR[8:0]
| cTL[5:0] N
¢RRYI5:0]

GPIF

* All EPx WORDWIDE bits must be cleared to zero for 8-bit single transactions. If any of the EPx WORDWIDE

bits are set to 1, then single transactions will be 16 bits wide.

Figure 10-19. Firmware Launches a Single-Write Waveform, WORDWIDE=0

Page 10-38

EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

e LA LA LA LA L]

GADR[8:0] 0x00AB
FD[7:0] hi-Z 0x01 hi-Z
CTLO
RDYO
v v v v
NDP NDP NDP NDP NDP NDP
i1 i2 i3 i4

Figure 10-20. Single-Write Transaction Waveform

State 0 1 2 3 4 5 6 7
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate NO Data NO Data NO Data NO Data
NextData SameData SameData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

BranchO

Re-execute
CTLO 1 1 0 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

Figure 10-21. GPIFTool Setup for the Waveform of Figur e10-20

Single-Write transactions are simpler than Single-Read transactions because no dummy-read
operation is required. To execute a Single-Write transaction:

1. Initialize the GPIF Configuration Registers and Waveform Descriptors.

2. Ifin 16-bit mode (WORDWIDE = 1), write the most-significant byte of the data to the
XGPIFSGLDATH register, then write the least-significant byte to the XGPIFSGLDATLX regis-

Chapter 10. General Programmable Interface (GPIF) Page 10-39

EZ-USB FX2 Technical Reference Manual

ter to start a Single-Write transaction.

In 8-bit mode, simply write the data to the XGPIFSGLDATLX register to start a Single-Write
transaction.

3. Wait for the GPIF to indicate that the transaction is complete. When the transaction is com-
plete, the DONE bit (GPIFIDLECS.7 or GPIFTRIG.7) will be set to 1. If enabled, a GPIFDONE
interrupt will also be generated.

The following C program fragments (Figures 10-22 and 10-23) illustrate how to perform a Sin-
gle-Write transaction in 8-bit mode (WORDWIDE=0):

#def i ne PERI PHCS 0x00AB
#def i ne P_HSMODE 0x01

/'l prototypes
void Guiflnit(void);

/1l Set Address GPI FADR[8:0] to PERI PHERAL
voi d Peripheral _Set Address(WORD gaddr)

{

GPl FADRH = gaddr >> 8;

SYNCDELAY;

GPl FADRL = (BYTE)gaddr; // setup GPIF address
}

/1l write single byte to PERI PHERAL, using GPlF
voi d Peripheral _SingleByteWite(BYTE gdata)

while(!'(GPIFTRIG & 0x80)) // poll GPIFTRI G 7 Done bit
{

}

XGPI FSGLDATLX = gdata; // trigger GPIF single byte wite transaction
}

Figure 10-22. Single-Write Transaction Functions

Page 10-40 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

void TD Init(void)
{

Goiflnit(); // Configures GPIF from GPl FTool generated waveform data
/1 TODO. configure other endpoints, etc. here
// TODO arm OUT buffer(s) here

/1 setup INT4 as internal source for GPIF interrupts

/1 using I NT4CLR (SFR), autonmtically enabl ed

[/ /1 NTSETUP | = 0x03; //Enable | NT4 Autovectoring

/' | SYNCDELAY;

/1 GPIFIE = 0x03; // Enable GPI FDONE and GPl FWF interrupt(s)
/' | SYNCDELAY;

/1 EIE | = 0x04; // Enable INT4 ISR ElIE. 2(ElI EX4)=1

/1 TODO. configure GPIF interrupt(s) to neet your needs here
/1 tell peripheral we're going into high speed xfr node

Peri pher al _Set Address(PERI PHCS);
Peri pheral _Si ngl eByteWite(P_HSMODE);

Figure 10-23. Initialization Code for Single-Write Transactions

10.4.3 FIFO-Read and FIFO-Write Transactions

FIFO-Read and FIFO-Write waveforms transfer data to and from the FX2's Slave FIFOs (see
Chapter 9 "Slave FIFOs"). The waveform is started by writing to EPXTRIG, where “x” represents
the FIFO (2, 4, 6, or 8) to/from which data should be transferred, or to GPIFTRIG.

A FIFO-Read or FIFO-Write waveform will generally transfer a long stream of data rather than a
single byte or word. Usually, the waveform is programmed to terminate when a FIFO flag asserts
(e.g., when an IN FIFO is full or an OUT FIFO is empty) or after a specified number of transactions.
A “transaction” is a transfer of a single byte (if WORDWIDE = 0) or word (if WORDWIDE = 1) to or
from a FIFO. Using the GPIFTool’'s terminology, a transaction is either an “Active” or “Next Data”.

10.4.3.1 Transaction Counter

To use the Transaction Counter for FIFO “x”, load GPIFTCB3:0 with the desired number of transac-
tions (1 to 4,294,967,295; 0 = 4,294,967,296). When a FIFO-Read or -Write waveform is triggered
on that FIFO, the GPIF will transfer the specified number of bytes (or words, if WORDWIDE = 1)
automatically.

This mode of operation is called Long Transfer Mode; when the Transaction Counter is used in this
way, the Waveform Descriptor should branch to the Idle State after each transaction.

Chapter 10. General Programmable Interface (GPIF) Page 10-41

EZ-USB FX2 Technical Reference Manual

Each time through the Idle State, the GPIF will decrement the Transaction Count; when it expires,
the waveform terminates and the DONE bit is set.

Otherwise, the GPIF re-executes the entire Waveform Descriptor. In Long Transfer Mode, the
DONE bit isn’t set until the Transaction Count expires.

While the Transaction Count is active, the GPIF checks the Full Flag (for IN FIFOs) or the Empty
Flag (for OUT FIFOs) on every pass through the Idle State. If the flag is asserted, the GPIF
pauses until the over/underflow threat is removed, then it automatically resumes. In this way, the
GPIF automatically throttles data flow in Long Transfer Mode.

The GPIFTCB3:0 registers are readable and they update as transactions occur, so the CPU can
read the Transaction Count value at any time.

10.4.3.2 Reading the Transaction-Count Status in a DP State

To sample the transaction-count status in a DP State, set GPIFREADYCFG.5 to 1 (which instructs
the FX2 to replace the RDYS5 input with the transaction-count status), then launch a FIFO transac-
tion which uses a transaction count. The FX2 will set RDY5 to 1 when the transaction count
expires.

Typically, this feature is used with “re-execute” control tasks; it allows the Transaction Counter to
be used without passing through the Idle State after each transaction.

10.4.4 GPIF Flag Selection

The GPIF can examine the PF, EF, or FF (of the current FIFO) during a waveform. One of the
three flags is selected by the FS[1:0] bits in the EPXGPIFFLGSEL register; that selected flag is
called the GPIF Flag.

10.4.5 GPIF Flag Stop

When EPXGPIFPFSTOPR.0 is set to 1, FIFO-Read and -Write transactions are terminated by the
assertion of the GPIF Flag. When this feature is used, it overrides the Transaction Counter; the
GPIF waveform terminates (sets DONE to 1) only when the GPIF Flag asserts.

No special programming of the Waveform Descriptors is necessary, and FIFO Waveform Descrip-
tors that transition through the Idle State on each transaction (i.e., waveforms that don’t use the
Transaction Counter) are unaffected. Automatic throttling of the FIFOs in IDLE still occurs, so
there’s no danger that the GPIF will write to a full FIFO or read from an empty FIFO.

NG
Unless the firmware aborts the GPIF transfer by writing to the GPIFABORT register, only the GPIF
Flag assertion will terminate the waveform and set the DONE bit.

A waveform can potentially execute forever if the GPIF Flag never asserts.

Page 10-42 EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

The GPIF Flag is tested only while transitioning through the Idle State, and it isn’t latched. If
a GPIF Flag assertion occurs in one State, and the next State is a DP which tests the GPIF Flag

and waits until it's de-asserted before allowing the state machine to continue to the Idle State, the
GPIF will automatically branch back to State 0 as though the GPIF Flag had never been asserted.

10.4.5.1 Performing a FIFO-Read Transaction

8051

GPIF

Device Pins

FD[7:0]

30/48MHz

IFCLK

5-48MHz

XDATA
Slave FIFOs EPXEF
EP2FIFOBUF EPxFF
EP4FIFOBUF EP2 — EPXPF o)
EP4
EP6FIFOBUF s SLOE
EPSFIFOBUF SLRD
> EP8
¢SLVR
INPKTEND ? ? FIFOADR[1:0]
Waveform Descriptors
WFO
WF1
WF2
WF3
GPIFTRIG
P
GPIF DONE
GPIFWF
8051 INTRDY
P

Figure 10-24. Firmware Launches a FIFO-Read Waveform

Chapter 10. General Programmable Interface (GPIF)

GPIF

GPIFADR[8:0]
e

|_cTL[5:0])
¢RRYI5:0]

Page 10-43

EZ-USB FX2 Technical Reference Manual

GPIF TC EPXFIFOBUF

TC=N 0x01 Peripheral data (Pdata)
TC=N+1 | 0x02 N N+1 N+2 512
TC=N+2 0x03
: ; : 0x01 0x02 0x03 OXFF
i2 i2 i2 i2

TC=512 OxFF

IFCLK | | | | |
GADR[8:0] 0x0000
FD[7:0] hi-Z Pdata++ hi-Z
CTLO
RDYO
v v v v
NDP NDP NDP NDP NDP NDP
i1 i2 i3 i4

Figure 10-26. FIFO-Read Transaction Waveform

The above waveform executes until the Transaction Counter expires (until it counts to 512, in this
example). The Transaction Counter is decremented and sampled on each pass through the Idle
State.

Each iteration of the waveform reads a data value from the FIFO Data bus into the FIFO, then dec-

rements and checks the Transaction Counter. When it expires, the DONE bit is set to 1 and the
GPIFDONE interrupt request is asserted.

Page 10-44 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

State 0 1 2 3 4 5 6 7
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate NO Data NO Data NO Data NO Data
NextData SameData SameData SameData SameData SameData SameData SameData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

Branch0

Re-execute
CTLO 1 1 0 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

Figure 10-27. GPIFTool Setup for the Waveform of Figur e10-26

Typically, when performing a FIFO Read, only one “Activate” is needed in the waveform, since
each execution of “Activate” increments the internal FIFO pointer (and EPxBCH:L) automatically.

To perform a FIFO-Read Transaction:

1. Inthe GPIFTRIG register, set the RW bit to 1 and load EP1:0 with the appropriate value for the
FIFO which is to receive the data.

2. Program the FX2 to detect completion of the transaction. As with all GPIF Transactions, bit 7
of the GPIFTRIG register (the DONE bit) signals when the Transaction is complete.

3. Program the FX2 to commit (“pass-on”) the data from the FIFO to the endpoint. The data can
be transferred from the FIFO to the endpoint by either of the following methods:

 AUTOIN=1: CPU is not in the data path; the FX2 automatically commits data from the
FIFO Data bus to the USB.

e AUTOIN=0: Firmware must manually commit data to the USB by writing either EPXxBCL or
INPKTEND (with SKIP=0).

The following C program fragments (Figures 10-28 through 10-31) illustrate how to perform a
FIFO-Read transaction in 8-bit mode (WORDWIDE = 0) with AUTOIN = 0:

Chapter 10. General Programmable Interface (GPIF) Page 10-45

EZ-USB FX2 Technical Reference Manual

#define GPIFTRIGRD 4

#define GPIF_EP2 0O
#define GPIF_EP4 1
#defi ne GPI F_EP6 2
#define GPIF_EP8 3

#def i ne BURSTMODE 0x0000
#defi ne HSPKTSI ZE 512

/1 read(s) from PERI PHERAL, using GPIF and EPxFI FO
voi d Peripheral _FI FORead(BYTE FI FO_EpNum)

{
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 GPIF Done bit
{
}
/1 trigger FIFO read transaction(s), using SFR
GPI FTRIG = GPI FTRIGRD | FI FO_EpNum /1 RIWe1, EP[1:0]=FI FO_EpNum
/1 for EPx read(s)
}

/1 Set EP8GPIF Transaction Count
voi d Peripheral _Set EP8GPI FTC(WORD xfrcnt)
{
EP8GPI FTCH
EP8GPI FTCL

xfrent >> 8; // setup transaction count
(BYTE)xfrcnt;

Figure 10-28. FIFO-Read Transaction Functions

Page 10-46 EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

void TD Init(void)
{
Goiflnit(); // Configures GPIF from GPl FTool generated waveform data
/1 TODO. configure other endpoints, etc. here
EP8CFG = OxEOQ; // EP8 is DI R=IN, TYPE=BULK
SYNCDELAY;
EP8FI FOCFG = 0x04; // EP8 is AUTOOUT=0, AUTO N=0, ZEROLEN=1, WORDW DE=0
/] TODO. arm OUT buffer(s) here
/1 setup INT4 as internal source for GPIF interrupts
/1 using I NT4CLR (SFR), autonmtically enabl ed
[/1 NTSETUP | = 0x03; //Enable | NT4 Autovectoring
/ | SYNCDELAY;
/1 GPIFIE = 0x03; // Enable GPI FDONE and GPlI FWF interrupt(s)
/ | SYNCDELAY;
//EIE | = 0x04; // Enable INT4 ISR, EIE 2(EI EX4)=1
/1 TODO. configure GPIF interrupt(s) to neet your needs here
/1 tell peripheral we're going into high speed xfr node
Peri pher al _Set Address(PERI PHCS);
Peri pheral _Singl eByteWite(P_HSMODE);
/1 configure some GPIF registers
Peri pheral _Set Address(BURSTMCDE) ;
Peri pheral _Set EP8GPI FTC(HSPKTSI ZE) ;
}

Figure 10-29. Initialization Code for FIFO-Read Transactions

void TD Poll (void)
{

if(ibn_event _flag)

{ /'l host is asking for EP8 data
Peri pheral _FI FORead(GPIF_EP8);
ibn_event_flag = 0;

}

i f(gpifdone_event_flag)
{ /] GPIF currently pointing to EP8, |ast FIFO accessed
if(!(EP2468STAT & 0x80))
{ I/ EP8F=0 when buffer avail able
I NPKTEND = 0x08; /1l Firmmvare commits pkt by witing 8 to | NPKTEND
gpi fdone_event _flag = 0;
}
}

Figure 10-30. FIFO-Read w/ AUTOIN = 0, Committing Packets via INPKTEND w/SKIP=0

Chapter 10. General Programmable Interface (GPIF) Page 10-47

EZ-USB FX2 Technical Reference Manual

void TD Poll (void)
{

if(!(EP68FI FOFLGS & 0x10))

{ I/ EP8FF=0 when buffer avail able
/1 host is taking EP8 data fast enough
Peri pheral _FI FORead(GPIF_EP8);

}

i f(gpifdone_event_flag)
{ /!l GPIF currently pointing to EP8, |last FIFO accessed
if(!(EP2468STAT & 0x80))
{ /'l EP8F=0 when buffer avail able
/1 nodify the data
EP8FI FOBUF[0] = 0x02; // <STX>, packet start of text nsg
EP8FI FOBUF[7] = 0x03; // <ETX>, packet end of text nsg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x08; // pass buffer on to host

Figure 10-31. FIFO-Read w/ AUTOIN = 0, Committing Packets via EPxBCL

10.4.6 Firmware Access to IN packet(s), (AUTOIN=1)

The only difference between auto (AUTOIN=1) and manual (AUTOIN=0) modes for IN packet(s) is
the packet length feature (EPXAUTOINLENH/L).

8051

uUsB Slave lj GPIF

AUTOIN=1, Long Transfer Mode

Figure 10-32. AUTOIN=1, GPIF FIFO Read Transactions, AUTOIN =1

Page 10-48 EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

TD Init():

EP8CFG = OxEO; // EP8 is DIR=IN, TYPE=BULK

SYNCDELAY;

EP8FI FOCFG = 0x0C, // EP8 is AUTOOUT=0, AUTO N=1, ZEROLEN=1, WORDW DE=0
SYNCDELAY;

EPSBAUTO NLENH = 0x02; // if AUTO N=1, auto conmmit 512 byte packets
SYNCDELAY;
EPS8AUTO NLENL

0x00;

TD Pol I ():

/1 no code necessary to xfr data fromnaster to host!
/1 AUTO N=1 and EP8SAUTO NLEN=512 auto conmm ts packets,
/1 in 512 byte chunks.

Figure 10-33. FIFO-Read Transaction Code, AUTOIN =1

8051

use [Pata Paih Slave b GPIF

AUTOIN=0 or
AUTOIN=1

Figure 10-34. Firmware intervention, AUTOIN = 0/1

10.4.7 Firmware Access to IN Packet(s), (AUTOIN = 0)

In manual IN mode (AUTOIN=0), the firmware has the following options:

1. It can commit (“pass-on”) packet(s) sent from the master to the host when a buffer is available,
by writing the INPKTEND register with the corresponding EPx number and SKIP=0 (see
Figure 10-35).

2. It can skip a packet by writing to INPKTEND with SKIP=1. See Figure 10-36.

3. It can source or edit a packet (i.e., write directly to EPXFIFOBUF) then write the EPXBCL. See
Figure 10-37.

Chapter 10. General Programmable Interface (GPIF) Page 10-49

EZ-USB FX2 Technical Reference Manual

TD_Pol I ():

if(master_finished_longxfr())
{ /I master currently points to EP8, |last FlIFO accessed
if(!'(EP68FI FOFLGS & 0x10))
{ /I EP8FF=0 when buffer avail able
I NPKTEND = 0x08; // Firmnare conmmits pkt
/1 by witing #8 to | NPKTEND
rel ease_master(EP8);
}
}

Figure 10-35. Committing a Packet by Writing INPKTEND with EPx Number (w/SKIP=0)

TD_Pol I ():

if(master_finished_longxfr())
{ /I master currently points to EP8, |last FlIFO accessed
if(!'(EP68FI FOFLGS & 0x10))
{ I/ EP8FF=0 when buffer avail able
| NPKTEND = 0x88; // Firmnare conmmits pkt
/1 by witing 88 to | NPKTEND
rel ease_master(EP8);
}
}

Figure 10-36. Skipping a Packet by Writing to INPKTEND w/SKIP=1

Page 10-50 EZ-USB FX2 Technical Reference Manual v2.1

CYPRESS

TD Pol I ():

i f(source_pkt_event)
{ /1 100nsec background timer fired
i f(holdoff_master())
{ /I signaled “busy” to master successful
while(!'(EP68FI FOFLGS & 0x20))
{ /] EP8EF=0, when buffer not enpty
;1 wait ‘til host takes entire FIFO data

}

/'l Reset FIFO 8.

FI FORESET = 0x80; // Activate NAK-All to avoid race conditions.
SYNCDELAY;

FI FORESET = 0x08; // Reset FIFO 8.

SYNCDELAY;

FI FORESET = 0x00; // Deactivate NAK-AlI.

EP8FI FOBUF[0] = 0x02; [/ <STX>, packet start of text nsg
EP8FI FOBUF[1] = 0x06; // <ACK>
EP8FI FOBUF[2] = 0x07; [// <HEARTBEAT>
EP8FI FOBUF[3] = 0x03; // <ETX>, packet end of text msg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x04; // pass src'd buffer on to host
}
el se
{
hi story_record(EP8, BAD MASTER);
}

}

Figure 10-37. Sourcing an IN Packet by writing to EPXBCH:L

Chapter 10. General Programmable Interface (GPIF)

Page 10-51

EZ-USB FX2 Technical Reference Manual

10.4.7.1 Performing a FIFO-Write Transaction

8051

Page 10-52

8051 XDATA GPIF Device Pins
FD[7:0]
>
30/48MHz
IFCLK
5 - 48MHz
Slave FIFOs EPXEF
EP2FIFOBUF EPXFF CLK
EP4FIFOBUF EP2 — EPXPF o]
EP6FIFOBUF EP4 SLOE GPIFADR[8:0] y
EPSFIFOBUF EP6 ‘
<« EP8 SLRD
ELWR |__cTL[5:0] >
f f RDY[5:0
INPKTEND FIFOADR[1:0] Y0l
W aveform Descriptors
WEO GPIF
WF1
WF2
WF3
GPIFTRIG
GPIF DONE
<
GPIF INTRDY
8051 INTRDY >
Figure 10-38. Firmware Launches a FIFO-Write Waveform
GPIF TC EPXFIFOBUF
TC=N 0x01 Peripheral data (Pdata)
TC=N+1 0x02 N N+1 N+2 512
TC=N+2 0x03
C 7: 0x01 0x02 0x03 OXFF
i2 i2 i2 .. i2
TC=512 OXFF

Figure 10-39. Example FIFO-Write Transaction

EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

IFCLK | | E E E S | | |

GADR[8:0] 0x0000
FD[7:0] hi-Z Pdata++ hi-Z
CTLO
RDYO
v v v v
NDP NDP NDP NDP NDP NDP
i1 i2 i3 i4

Figure 10-40. FIFO-Write Transaction Waveform

The above waveform executes until the Transaction Counter expires (until it counts to 512, in this
example). The Transaction Counter is decremented and sampled on each pass through the Idle
State.

Each iteration of the waveform writes a data value from the FIFO to the FIFO Data bus, then dec-
rements and checks the Transaction Counter. When it expires, the DONE bit is set to 1 and the
GPIFDONE interrupt request is asserted.

State 0 1 2 3 4 5 6 7
AddrMode Same Val SameVal SameVal SameVal SameVal SameVal Same Val
DataMode No Data No Data Activate NO Data NO Data NO Data NO Data
NextData SameData SameData SameData SameData SameData SameData NextData
Int Trig No Int No Int No Int No Int No Int No Int No Int

IF/Wait Wait 4 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1 Wait 1

Term A

LFUNC

Term B

Branchl

BranchO

Re-execute
CTLO 1 1 0 1 1 1 1 1
CTL1 1 1 1 1 1 1 1 1
CTL2 1 1 1 1 1 1 1 1
CTL3 1 1 1 1 1 1 1 1
CLT4 1 1 1 1 1 1 1 1
CTL5 1 1 1 1 1 1 1 1

Figure 10-41. GPIFTool Setup for the Waveform of Figur e10-40

Chapter 10. General Programmable Interface (GPIF) Page 10-53

EZ-USB FX2 Technical Reference Manual

Typically, when performing a FIFO-Write, only one “NextData” is needed in the waveform, since
each execution of “NextData” increments the FIFO pointer.

To perform a FIFO-Write Transaction:

1.

In the GPIFTRIG register, set the RW bit to 0 and load EP1:0 with the appropriate value for the
FIFO which is to receive the data.

Program the FX2 to detect completion of the transaction. As with all GPIF Transactions, bit 7
of the GPIFTRIG register (the DONE bit) signals when the Transaction is complete.

Program the FX2 to commit (“pass-on”) the data from the endpoint to the FIFO. The data can
be transferred by either of the following methods:

AUTOOUT=1: CPU is not in the data path; the FX2 automatically commits data from the
USB to the FIFO Data bus.

AUTOOUT=0: Firmware must manually commit data to the FIFO Data bus by writing
EPxBCL.7=0 (firmware can choose to skip the current packet by writing EPxBCL.7=1).

The following C program fragments (Figures 10-42 through 10-44) illustrate how to perform a
FIFO-Read transaction in 8-bit mode (WORDWIDE = 0) with AUTOOUT = 0:

#define GPI FTRIGAR O

#define GPIF_EP2 0O
#define GPIF_EP4 1
#defi ne GPIF_EP6 2
#define GPIF_EP8 3

#def i ne BURSTMODE 0x0000
#defi ne HSPKTSI ZE 512

/'l wite byte(s) to PERI PHERAL, using GPIF and EPxFI FO
voi d Peripheral _FIFOVNite(BYTE FI FO_EpNum)

while('(GPIFTRIG & 0x80)) // poll GPIFTRI G 7 Done bit
{

}

/1 trigger FIFO wite transaction(s), using SFR
GPI FTRIG = FI FO EpNum // R/ We0, EP[1:0] =FI FO_EpNum for EPx write(s)

}

/1 Set EP2GPIF Transaction Count
voi d Peri pheral _Set EP2GPI FTC(WORD xfrcnt)
{
EP2GPI FTCH
EP2GPI FTCL

}

xfrent >> 8; // setup transaction count
(BYTE)xfrcnt;

Figure 10-42. FIFO-Write Transaction Functions

Page 10-54 EZ-USB FX2 Technical Reference Manual v2.1

igﬂ*ltﬁﬂﬁ

void TD_Init(void)
{
Goiflnit(); // Configures GPIF from GPl FTool generated waveform data
/1 TODO. configure other endpoints, etc. here
EP2CFG = 0xA2; // EP2 is DI R=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
EP2FI FOCFG = 0x00; // EP2 is AUTOOUT=0, AUTO N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;
/1 “all” EP2 buffers automatically arm when AUTOOUT=1
// TODO arm OUT buffer(s) here
EP2BCL = 0x80; // wite BCL w skip=1
SYNCDELAY;
EP2BCL = 0x80; // wite BCL w skip=1
SYNCDELAY;
/] setup INT4 as internal source for GPIF interrupts
/1 using INTACLR (SFR), automatically enabl ed
[/ /1 NTSETUP | = 0x03; //Enable | NT4 Autovectoring
/1 GPIFIE = 0x03; // Enable GPI FDONE and GPl FWF interrupt(s)
/1 EIE | = 0x04; // Enable INT4 ISR ElIE. 2(El EX4)=1
// TODO configure GPIF interrupt(s) to neet your needs here
/1 tell peripheral we're going into high speed xfr node
Peri pheral _Set Address(PERI PHCS);
Peri pheral _Singl eByteWite(P_HSMODE);
/1 configure sone GPIF control registers
Peri pher al _Set Addr ess(BURSTMODE) ;
}

Figure 10-43. Initialization Code for FIFO-Write Transactions

void TD Poll (void)
{

if(!(EP2468STAT & 0x01))
{ I/ EP2EF=0 when FIFO “not” enpty, host sent pkt.
EP2BCL = 0x00; // SKIP=0, pass buffer on to naster

i f(gpifdone_event_flag)
{
Peri pheral _Set EP2GPI FTC(HSPKTSI ZE) ;
Peripheral _FIFOWite(GPIF_EP2);
gpi fdone_event _flag = O;
}
}

Figure 10-44. FIFO-Write w/ AUTOOUT = 0, Committing Packets via EPxBCL

Chapter 10. General Programmable Interface (GPIF) Page 10-55

EZ-USB FX2 Technical Reference Manual

10.4.8 Firmware access to OUT packets, (AUTOOUT=1)

To achieve the maximum USB 2.0 bandwidth, the host and master are directly connected when
AOUTOOUT=1; the CPU is bypassed and the OUT FIFO is automatically committed to the host:

8051

uUSB > Slave |, GPIF

AUTOOUT=1, Long Transfer Mode

Figure 10-45. CPU not in data path, AUTOOUT=1

TD Init():
REVCTL = 0x03; /] MJUST set REVCTL.0 and REVCTL.1 to 1
SYNCDELAY;
EP2CFG = O0xA2; /1 EP2 is DIR=QUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;
FI FORESET = 0x80; /! Reset the FIFO
SYNCDELAY;
FI FORESET = 0x02;
SYNCDELAY;
FI FORESET = 0xO00;
SYNCDELAY;
EP2FI FOCFG = 0x10; /1 EP2 is AUTOOUT=1, AUTO N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;
QUTPKTEND = 0x82; /1 Armboth EP2 buffers to “prime the punp”
SYNCDELAY;
OUTPKTEND = 0x82;
Figure 10-46. TD_Init Example: Configuring AUTOOUT =1
TD_Pol | ():

/1 no code necessary to xfr data fromhost to master!
/] AUTOOUT=1 and S| ZE=0 auto commits packets,
/1 in 512 byte chunks.

Figure 10-47. FIFO-Write Transaction Code, AUTOOUT =1

Page 10-56 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

10.4.9 Firmware access to OUT packets, (AUTOOUT =0)

8051

USB [] Slave |, GPIF

AUTOOUT=0

Figure 10-48. Firmware can Skip or Commit, AUTOOUT =0

TD Init():

EP2CFG = 0xA2; // EP2 is DI R=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

EP2FI FOCFG = 0x00; // EP2 is AUTOOUT=0, AUTO N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;

/1 OUJT endpoints do NOT cone up arnmed

EP2BCL = 0x80; // armfirst buffer by witing BC w skip=1

SYNCDELAY;

EP2BCL = 0x80; // arm second buffer by witing BC w skip=1

Figure 10-49. Initialization Code for AUTOOUT =0

In manual OUT mode (AUTOOUT = 0), the firmware has the following options:

1. It can commit (“pass-on”) packet(s) sent from the host to the master when a buffer is available,
by writing the OUTPKTEND register with the SKIP bit (OUTPKTEND.7) cleared to O (see
Figure 10-50).

TD Pol I ():

if(!'(EP24FI FOFLGS & 0x02))

{ /| EP2EF=0 when FIFO “not” enpty, host sent pkt.
OQUTPKTEND = 0x02; // SKIP=0, pass buffer on to master

}

Figure 10-50. Committing an OUT Packet by Writing OUTPKTEND w/SKIP=0

Chapter 10. General Programmable Interface (GPIF) Page 10-57

EZ-USB FX2 Technical Reference Manual

2. It can skip packet(s) sent from the host to the master by writing the EPxBCL register with the
SKIP bit (EPXBCL.7) setto 1 (see Figure 10-51).

TD Pol I ():

if(!'(EP24FI FOFLGS & 0x02))
{ /| EP2EF=0 when FIFO “not” enpty, host sent pkt.
OUTPKTEND = 0x82; // SKIP=1, do NOT pass buffer on to master

}

Figure 10-51. Skipping an OUT Packet by Writing OUTPKTEND w/SKIP=1

3. It can edit the packet (or source an entire OUT packet) by writing to the FIFO buffer directly,
then writing the length of the packet to EPXBCH:L. The write to EPXxBCL commits the edited
packet, so EPxBCL should be written after writing EPXBCH (Figure10-52).

In all cases, the OUT buffer automatically re-arms so it can receive the next packet.

See Section 8.6.2.4 for a detailed description of the SKIP bit.

TD Pol I ():

i f(EP24FI FOFLGS & 0x02)

{

SYNCDELAY; /1

FI FORESET = 0x80; /1 nak all QUT pkts. from host
SYNCDELAY; /1

FI FORESET = 0x02; /1 advance all EP2 buffers to cpu domain
SYNCDELAY; /1

EP2FI FOBUF[0] = OxAA; /1l create newly sourced pkt. data
SYNCDELAY; /1

EP2BCH = 0x00;

SYNCDELAY; /1

EP2BCL = 0x01; /1 commit newmy sourced pkt. to interface fifo

/1l beware of "left over" unconmtted buffers

SYNCDELAY; I

QUTPKTEND = 0x82; /1 skip uncommitted pkt. (second pkt.)
/1 note: core will not allow pkts. to get out of sequence
SYNCDELAY; I

FI FORESET = 0x00; /'l release "nak all"

}

Figure 10-52. Sourcing an OUT Packet (AUTOOUT = 0)

Page 10-58 EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

The OUT FIFO is not committed to the host during a power-on-reset. In its initialization routine,
therefore, the firmware should skip n packets (where n = 2, 3, or 4 depending on the buffering
depth) in order to ensure that the entire FIFO is committed to the host. See Figure 10-53.

The master is not notified when a packet has been skipped by the firmware.

D Init():
EP2CFG = 0xA2; // EP2 is DIR=OUT, TYPE=BULK, SIZE=512, BUF=2x
SYNCDELAY;

EP2FI FOCFG = 0x00; // EP2 is AUTOOUT=0, AUTOI N=0, ZEROLEN=0, WORDW DE=0
SYNCDELAY;

/1 OUT endpoints do NOT conme up arned

EP2BCL = 0x80; // armfirst buffer by witing BC w skip=1
SYNCDELAY;

EP2BCL = 0x80; // arm second buffer by witing BC w skip=1

Figure 10-53. Ensuring that the FIFO is Clear after Power-On-Reset

10.4.10 Burst FIFO Transactions

The GPIF can be configured to repeat transactions automatically, with no firmware intervention.
These “Burst” transactions (which must always be FIFO-Read or -Write transactions) may be con-
trolled by the Transaction Counter, the GPIF_PF flag, or the GPIFABORT register.

The following C program fragments (Figures 10-54 through 10-57) illustrate how to perform Burst
FIFO-Read transactions using GPIF_PF in 8-bit mode (WORDWIDE=0) and AUTOIN=0:

Chapter 10. General Programmable Interface (GPIF) Page 10-59

EZ-USB FX2 Technical Reference Manual

#define GPIFTRIGRD 4

#define GPIF_EP2 0O
#define GPIF_EP4 1
#defi ne GPI F_EP6 2
#define GPIF_EP8 3

#def i ne BURSTMODE 0x0000
#defi ne HSPKTSI ZE 512

/1 read(s) from PERI PHERAL, using GPIF and EPxFI FO
voi d Peripheral _FI FORead(BYTE FI FO_EpNum)

{
while(!'(GPIFTRIG & 0x80)) // poll GPIFTRIG 7 GPIF Done bit
{
}
/1 trigger FIFO read transaction(s), using SFR
GPI FTRIG = GPI FTRIGRD | FI FO_EpNum /'l RIWE1, EP[1:0]=FI FO_EpNum
/1 for EPx read(s)
}

/1 Set EP8GPIF Transaction Count
voi d Peripheral _Set EP8GPI FTC(WORD xfrcnt)
{
EP8GPI FTCH
EP8GPI FTCL

xfrent >> 8; // setup transaction count
(BYTE)xfrcnt;

Figure 10-54. Burst FIFO-Read Transaction Functions

Page 10-60 EZ-USB FX2 Technical Reference Manual v2.1

CYPRESS

{

void TD Init(void)

Goiflnit(); // Configures GPIF from GPl FTool generated waveform data

/1 TODO. configure other endpoints, etc. here
EP8CFG = OxEOQ; // EP8 is DI R=IN, TYPE=BULK
SYNCDELAY;

EP8FI FOCFG = 0x04; // EP8 is AUTOOUT=0, AUTO N=0, ZEROLEN=1, WORDW DE=0

SYNCDELAY;
/1 TODO. arm OUT buffer(s) here

/1 setup INT4 as internal source for GPIF interrupts

/1 using INTACLR (SFR), automatically enabl ed

/ /1 NTSETUP | = 0x03; //Enable | NT4 Autovectoring

/ | SYNCDELAY;

/1 GPIFIE = 0x03; // Enable GPI FDONE and GPlI FWF interrupt(s)
/ | SYNCDELAY;

//EIE | = 0x04; // Enable INT4 ISR, EIE. 2(EIEX4)=1

/] TODO configure GPIF interrupt(s) to neet your needs here
/1 tell peripheral we're going into high speed xfr node
Peri pheral _Set Address(PERI PHCS);

Peri pheral _Singl eByteWite(P_HSMODE);

/1 configure some GPIF registers
Peri pher al _Set Addr ess(BURSTMODE) ;

Figure 10-55. Initialization for Burst FIFO-Read Transactions

Chapter 10. General Programmable Interface (GPIF)

Page 10-61

EZ-USB FX2 Technical Reference Manual

void TD Poll (void)
{

if(ibn_event _flag)

{ Il host is asking for EP8 data
Peri pheral _Set EP8GPI FTC(HSPKTSI ZE) ;
Peri pheral _FI FORead(GPIF_EP8);
i bn_event _flag = 0;

}

i f(gpifdone_event_flag)
{ /] GPIF currently pointing to EP8, |ast FIFO accessed
if(!(EP2468STAT & 0x80))
{ I/ EP8F=0 when buffer available
I NPKTEND = 0x08; // Firmmvare commts pkt
/1 by witing #8 to | NPKTEND
gpi fdone_event _flag = 0;
}
}

/1 decide how GPIF transitions to DONE for FIFO Transactions
if(gpif_pf_event_flag)

EP8GPI FPFSTOP = 0x01; // set bit0O=1 to use GPIF_PF
}

el se

{
EP8GPI FPFSTOP = 0x00; // set bit0=0 to use TC

}

Figure 10-56. Burst FIFO-Read Transaction Example, Writing INPKTEND w/SKIP=0 to Commit

Page 10-62 EZ-USB FX2 Technical Reference Manual v2.1

; CYPRESS

void TD_Pol I (void)
{

if(!(EP68FI FOFLGS & 0x10))

{ /'l EP8FF=0 when buffer avail able

/'l host is taking EP8 data fast enough
Peri pheral _Set EP8GPI FTC(HSPKTSI ZE) ;
Peri pheral _FI FORead(GPI F_EP8);

}

i f(gpifdone_event_flag)
{ /] GPIF currently pointing to EP8, |ast FIFO accessed
if(!(EP2468STAT & 0x80))
{ /] EP8F=0 when buffer avail able
/1 modify the data
EP8FI FOBUF[0] = 0x02; // <STX>, packet start of text nsg
EP8FI FOBUF[7] = 0x03; // <ETX>, packet end of text nsg
SYNCDELAY;
EP8BCH = 0x00;
SYNCDELAY;
EP8BCL = 0x08; // pass buffer on to host
}
}

/1 decide how GPIF transitions to DONE for FIFO Transactions
if(gpif_pf_event_flag)

{
EP8GPI FPFSTOP = 0x01; // set bit0=1 to use GPIF_PF
}
el se
{
EP8GPI FPFSTOP = 0x00; // set bit0=0 to use TC
}

Figure 10-57. Burst FIFO-Read Transaction Example, Writing EPxBCL to Commit

10.5 UDMA Interface

The FX2 has additional GPIF registers specifically for implementing a UDMA (Ultra-ATA) interface.

For more information, please contact the Cypress Semiconductor Applications Department.

Chapter 10. General Programmable Interface (GPIF) Page 10-63

EZ-USB FX2 Technical Reference Manual

Page 10-64 EZ-USB FX2 Technical Reference Manual v2.1

_ =
—

=i
AL
= .= j.Ef_‘.":'_'r

=2 CYPRESS

Chapter 11 CPU Introduction

11.1 Introduction

The FX2's CPU, an enhanced 8051, is fully described in Chapter 12, "Instruction Set", Chapter 13,
"Input/Output”, and Chapter 14, "Timers/Counters and Serial Interface". This chapter introduces
the processor, its interface to the FX2 logic, and describes architectural differences from a stan-
dard 8051. Figure11-1 is a block diagram of the FX2's 8051-based CPU.

Crystal
Register Serial Portl Timer2
RAM Timerl
Oscillator (256 bytes) | [Serial Port0 Timero
8-bit CPU

Interrupt

*
Control I/O Ports

Bus Control

* The EZ-USB family implements 1/O ports differently than in the standard 8051

Figure 11-1. FX2 CPU Features

Chapter 11. CPU Introduction Page 11-1

EZ-USB FX2 Technical Reference Manual

11.2 8051 Enhancements

The FX2 uses the standard 8051 instruction set, so it's supported by industry-standard 8051 com-
pilers and assemblers. Instructions execute faster on the FX2 than on the standard 8051

» Wasted bus cycles are eliminated; an instruction cycle uses only four clocks, rather than
the standard 8051's 12 clocks.

» The FX2's CPU clock runs at 12MHz, 24MHz, or 48MHz —up to four times the clock
speed of the standard 8051.

In addition to speed improvements, the FX2 includes the following architectural enhancements to
the CPU:

* A second data pointer

* Asecond USART

e Athird, 16-bit timer (TIMER2)

* A high-speed external memory interface with a non-multiplexed 16-bit address bus
« Eight additional interrupts (INT2-INT6, WAKEUP, T2, and USART1)

* Variable MOVX timing to accommodate fast and slow RAM peripherals

« Two Autopointers (auto-incrementing data pointers)

e Vectored USB and FIFO/GPIF interrupts

* Baud rate timer for 115K/230K baud USART operation

* Sleep mode with three wakeup sources

e An I2C-compatible bus controller that runs at 100 or 400 KHz

* FX2-specific SFRs

» Separate buffers for the SETUP and DATA portions of a USB CONTROL transfer

e A hardware pointer for SETUP data, plus logic to process entire CONTROL transfers
automatically

* CPU clock-rate selection of 12, 24 or 48MHz
» Breakpoint facility

e |/O Port C read and write strobes

Page 11-2 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

11.3 Performance Overview

The FX2 has been designed to offer increased performance by executing instructions in a 4-clock
bus cycle, as opposed to the 12-clock bus cycle in the standard 8051 (see Figure 11-2). This short-
ened bus timing improves the instruction execution rate for most instructions by a factor of three
over the standard 8051 architectures.

Some instructions require a different number of instruction cycles on the FX2 than they do on the
standard 8051. In the standard 8051, all instructions except for MUL and DIV take one or two
instruction cycles to complete. In the FX2, instructions can take between one and five instruction
cycles to complete. However, due to the shortened bus timing of the FX2, every instruction exe-
cutes faster than on a standard 8051, and the average speed improvement over the entire instruc-
tion set is approximately 2.5x. Table 11-1 catalogs the speed improvements.

Table 11-1. FX2 Speed Compared to Standard 8051

Of the 246 FX2 opcodes...
150 execute at 3.0x standard speed
51 execute at 1.5x standard speed
43 execute at 2.0x standard speed
2 execute at 2.4x standard speed

Average Improvement: 2.5%

Note: Comparison is between FX2 and standard 8051 run-
ning at the same clock frequency.

Chapter 11. CPU Introduction Page 11-3

EZ-USB FX2 Technical Reference Manual

Single-Byte, Single-Cycle Instruction Timing
_ «—>
PSEN —™__ [L [L. oI L T L [LTI LT
FX2 ADO-AD7 X X XXX XX OO XXX
PORT2 X X X
«
XTALL MUuiurriruruuruuuey
12
ALE [[[1 [[
Standard
g051 PSEN I | | | | 1 [
ADO-AD7 X X X X X X X X X
PORT2 X X X X X

Figure 11-2. FX2 to Standard 8051 Timing Comparison

11.4 Software Compatibility

The FX2 is object-code-compatible with the industry-standard 8051 microcontroller. That is, object
code compiled with an industry-standard 8051 compiler or assembler executes on the FX2 and is
functionally equivalent. However, because the FX2 uses a different instruction timing than the
standard 8051, existing code with timing loops may require modification.

The FX2 instruction timing is identical to that of the Dallas Semiconductor DS80C320.

11.5 803x/805x Feature Comparison

Table 11-2 provides a feature-by-feature comparison between the FX2 and several common 803x/
805x devices.

Page 11-4 EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

Table 11-2. Comparison Between FX2 and Other 803x/805x Devices

Intel Dallas | Cypress
Feature

8031 8051 80C32 gocs2 | DS80C320 | FX2
Clocks per instruction cycle 12 12 12 12 4 4
Program / Data Memory - 4 KB ROM - 8 KB ROM - 8 KB RAM
Internal RAM 128 bytes| 128 bytes | 256 bytes | 256 bytes | 256 bytes | 256 bytes
Data Pointers 1 1 1 1 2 2
Serial Ports 1 1 1 1 2 2
16-bit Timers 2 2 3 3 3 3
Interrupt sources (internal and 5 5 6 6 13 13
external)
Stretch data-memory cycles no no no no yes yes

11.6 FX2/DS80C320 Differences

Although the FX2 is similar to the DS80C320 in terms of hardware features and instruction cycle
timing, there are some important differences between the FX2 and the DS80C320.

11.6.1 Serial Ports

The FX2 does not implement serial port framing-error detection and does not implement slave
address comparison for multiprocessor communications. Therefore, the FX2 also does not imple-
ment the following SFRs: SADDRO, SADDR1, SADENO, and SADENL1.

11.6.2 Timer 2

The FX2 does not implement Timer 2 downcounting mode or the downcount enable bit (TMOD2,
Bit 0). Also, the FX2 does not implement Timer 2 output enable (T20E) bit (TMOD2, Bit 1). There-
fore, the TMOD2 SFR is also not implemented in the FX2.

The FX2 Timer 2 overflow output is active for one clock cycle. In the DS80C320, the Timer 2 over-
flow output is a square wave with a 50% duty cycle.

A

Although the T2O0E bit is not present in the FX2, Timer 2 output can still be enabled or disabled via
the PORTECFG.2 bit, since the T20UT pin is multiplexed with PORTE.2.

PORTECFG.2=0 configures the pin as a general-purpose 1/O pin and disabled Timer 2 output;
PORTECFG.2=1 configures the pin as the T20UT pin and enables Timer 2 output.

Chapter 11. CPU Introduction

Page 11-5

EZ-USB FX2 Technical Reference Manual

11.6.3 Timed Access Protection

The FX2 does not implement timed access protection and, therefore, does not implement the TA

SFR.

11.6.4 Watchdog Timer

The FX2 does not implement a watchdog timer.

11.6.5 Power Fail Detection

The FX2 does not implement a power fail detection circuit.

11.6.6 Port 1/0

The FX2's port I/0 implementation is significantly different from that of the DS80C320, mainly
because of the alternate functions shared with most of the 1/0 pins. See Chapter 13, "Input/Out-

put".

11.6.7 Interrupts

Although the basic interrupt structure of the FX2 is similar to that of the DS80C320, five of the

interrupt sources are different:

Table 11-3. Differences between FX and DS80C320 Interrupts

INterrupt | - b llas DS80C320 Cypress FX2
Priority
0 Power Fail RESUME (USB Wakeup)
8 External Interrupt2 | USB
9 External Interrupt 3 | [2C-Compatible Bus
10 External Interrupt 4 | GPIF/FIFOs
12 Watchdog Timer External Interrupt 6

For more information, refer to Chapter 14, "Timers/Counters and Serial Interface".

Page 11-6

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

11.7 EZ-USB FX2 Register Interface

The FX2 peripheral logic (USB, GPIF, FIFOs, etc.) is controlled via a set of memory mapped regis-
ters and buffers at addresses OxE400 through OxXFFFF. These registers and buffers are grouped as
follows:

e GPIF Waveform Descriptor Tables
* General configuration

» Endpoint configuration

e Interrupts

e Input/Output

* USB Control

e Endpoint operation

* GPIF/FIFOs

* Endpoint buffers

These registers and their functions are described throughout this manual. A full description of
every FX2 register appears in Chapter 15, "Registers"

11.8 EZ-USB FX2 Internal RAM

OxFF Upper 128 SFR Space

0x80 Indirect Addr Direct Addr
OX7F

Lower 128

Direct Addr

0x00

Figure 11-1. FX2 Internal Data RAM

Like the standard 8051, the FX2 contains 128 bytes of Internal Data RAM at addresses 0x00-0x7F
and a partially populated SFR space at addresses 0x80-0xFF. An additional 128 indirectly-
addressed bytes of Internal Data RAM (sometimes called “IDATA”") are also available at addresses
0x80-0xFF.

Chapter 11. CPU Introduction Page 11-7

EZ-USB FX2 Technical Reference Manual

All other on-chip FX2 RAM (program/data memaory, endpoint buffer memory, and the FX2 control
registers) is addressed as though it were off-chip 8051 memory. FX2 firmware reads or writes
these bytes as data using the MOVX (“move external”) instruction, even though the FX2 RAM and
register set is actually inside the EZ-USB FX2 chip. Off-chip memory attached to the FX2 address
and data buses (CY7C68013-128NC only) can also be accessed by the MOVX instruction. FX2
logic encodes its memory strobe and select signals (RD, WR, CS, OE, and PSEN) to eliminate the
need for external logic to separate the on-chip and off-chip memory spaces; see Chapter 5, "Mem-

ory".

11.9 1/O Ports

The FX2 implements 1/O ports differently than a standard 8051, as described in Chapter 13,
"Input/Output”.

The FX2 has up to five 8-bit wide, bidirectional 1/O ports. Each port is associated with a pair of reg-
isters:

* An “OEX" register, which sets the input/output direction of each of the 8 port pins
(0 =input, 1 = output).

« An “lIOx" register. Values written to I0x appear on the pins configured as outputs; values
read from IOx indicate the states of the 8 pins, regardless of input/output configuration.

Most I/O pins have alternate functions which are selected using configuration registers. When an
alternate configuration is selected for an 1/O pin, the corresponding OEx bit is ignored (see Section
13.2). The default (power-on reset) state of all I/O ports is: alternate configurations off, all I/O pins
configured as inputs.

Page 11-8 EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

11.10Interrupts

All standard 8051 interrupts, plus additional interrupts, are supported by the FX2.Tabl e11-4 lists
the FX2 interrupts.

Table 11-4. EZ-USB FX2 Interrupts

Standard 8051 | Additional FX2
Interrupts Interrupts SOUTES

INTO Pin PAO / INTO

INT1 Pin PA1/INT1

Timer O Internal, Timer O

Timer 1 Internal, Timer 1

Tx0 & Rx0 Internal, USARTO
INT2 Internal, USB
INT3 Internal, 2C-Compatible Bus Controller
INT4 Pin INT4 (100- and 128-pin only) OR Internal, GPIF/FIFOs
INTS Pin INT5 (100- and 128-pin only)
INT6 Pin INT6 (100- and 128-pin only)
WAKEUP Pin WAKEUP or Pin RA3/WU2
Tx1 & Rx1 Internal, USART1
Timer 2 Internal, Timer 2

The FX2 uses INT2 for 27 different USB interrupts. To help determine which interrupt is active, the
FX2 provides a feature called Autovectoring, which dynamically changes the address pointed to by
the “jump” instruction at the INT2 vector address. This second level of vectoring automatically
transfers control to the appropriate USB interrupt service routine (ISR). The FX2 interrupt system,
including a full description of the Autovector mechanism, is the subject of Chapter 4, "Interrupts".

11.11 Power Control

The FX2 implements a low-power mode that allows it to be used in USB bus-powered devices
(which are required by the USB specification to draw no more than 500 pA when suspended) and
other low-power applications. The mechanism by which the FX2 enters and exits this low-power
mode is described in detail in Chapter 6, "Power Management".

Chapter 11. CPU Introduction Page 11-9

EZ-USB FX2 Technical Reference Manual

11.12 Special Function Registers (SFR)

The FX2 was designed to keep coding as standard as possible, to allow easy integration of exist-
ing 8051 software development tools. The FX2 SFR registers are summarized in Tabl el1-5. Stan-

dard 8051 SFRs are shown in normal type and FX2-added SFRs are shown in bold type. Full

details of the SFRs can be found in Chapter 15, "Registers".

Table 11-5. FX2 Special Function Registers (SFR)

X 8x 9x AX Bx Cx Dx Ex | Fx
0 I0A 10B 10C 10D SCON1 PSW |ACC| B
1 SP EXIF INT2CLR IOE SBUF1

2 DPLO MPAGE INTACLR OEA

3 DPHO OEB

4 DPL1 OEC

5 DPH1 OED

6 DPS OEE

7 PCON

8 TCON SCONO IE IP T2CON | EICON | EIE |EIP
9 TMOD SBUFO

A TLO AUTOPTRH1 EP2468STAT EPO1STAT RCAP2L

B TL1 AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H

C THO EP68FIFOFLGS TL2

D TH1 AUTOPTRH2 GPIFSGLDATH TH2

E | CKCON | AUTOPTRL2 GPIFSGLDATLX

F AUTOPTRSETUP | GPIFSGLDATLNOX

N

All unlabed SFRs are reserved.

Page 11-10

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

11.13 External Address/Data Buses

The 128-pin version of the FX2 provides external, non-multiplexed 16-bit address and 8-bit data
buses. This differs from the standard 8051, which multiplexes eight pins among three sources:
I/O port 0, the external data bus, and the low byte of the external address bus.

A standard 8051 system with external memory requires a demultiplexing address latch, strobed by
the 8051 ALE (Address Latch Enable) pin. The external latch is not required by the FX2 chip, and
no ALE signal is provided. In addition to eliminating the need for this external latch, the non-multi-
plexed FX2 bus saves one cycle per memory-fetch and allows external memory to be connected
without sacrificing I/O pins.

The FX2 is the sole master of the bus, providing read and write signals to the off-chip memory. The
address bus is output-only, and cannot be floated.

11.14 Reset

The various FX2 resets and their effects are described in Chapter 7, "Resets".

Chapter 11. CPU Introduction Page 11-11

EZ-USB FX2 Technical Reference Manual

Page 11-12 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 12 Instruction Set

12.1 Introduction

This chapter provides a technical overview and description of the FX2's assembly-language

instruction set.

All FX2 instructions are binary-code-compatible with the standard 8051. The FX2 instructions
affect bits, flags, and other status functions just as the 8051 instructions do. Instruction timing,

however, is different both in terms of the number of clock cycles per instruction cycle and the num-

ber of instruction cycles used by each instruction.

Table 12-2 lists the FX2 instruction set and the number of instruction cycles required to complete
each instruction. Table 12-1 defines the symbols and mnemonics used in Table 12-2.

Table 12-1. Legend for Instruction Set Table

Symbol Function

A Accumulator

Rn Register (RO-R7, in the bank selected by RS1:RS0)

direct Internal RAM location (0x00 - 0x7F in the “Lower 128", or 0x80 - OXFF in “SFR” space)

@Ri Internal RAM location (0x00 - Ox7F in the “Lower 128", or 0x80 - OXFF in the “Upper 128”)
pointed to by RO or R1

rel Program-memory offset (-128 to +127 bytes relative to the first byte of the following
instruction). Used by conditional jumps and SIMP.

bit Bit address (0x20 - x2F in the “Lower 128,” and SFRs 0x80, 0x88,, 0xF0, OxF8)

#data 8-bit constant (0 - 255)

#datal6 16-bit constant (0 - 65535)

addrl6 16-bit destination address; used by LCALL and LIMP, which branch anywhere in program
memory

addrll 11-bit destination address; used by ACALL and AJMP, which branch only within the cur-
rent 2K page of program memory (i.e., the upper 5 address bits are copied from the PC)

PC Program Counter; holds the address of the currently-executing instruction. For the pur-
poses of “ACALL", “AJMP”, and “MOVC A,@A+PC" instructions, the PC holds the
address of the first byte of the instruction following the currently-executing instruction.

Chapter 12. Instruction Set

Page 12-1

EZ-USB FX2 Technical Reference Manual

Table 12-2. FX2 Instruction Set

. — 20 Opcode
Mnemonic Description Bytes | Cycles Flags (Hex)
Affected
Arithmetic
ADD A, Rn Add register to A 1 1 CY OV AC| 28-2F
ADD A, direct Add direct byte to A 2 2 CY OV AC 25
ADD A, @Ri Add data memory to A 1 1 CY OV AC| 26-27
ADD A, #data Add immediate to A 2 2 CY OV AC 24
ADDC A, Rn Add register to A with carry 1 1 CY OV AC| 38-3F
ADDC A, direct Add direct byte to A with carry 2 2 CY OV AC 35
ADDC A, @Ri Add data memory to A with carry 1 1 CY OV AC| 36-37
ADDC A, #data Add immediate to A with carry 2 2 CY OV AC 34
SUBB A, Rn Subtract register from A with borrow 1 1 CY OV AC| 98-9F
SUBB A, direct Subtract direct byte from A with borrow 2 2 CY OV AC 95
SUBB A, @RI Subtract data memory from A with borrow 1 1 CY OV AC| 96-97
SUBB A, #data Subtract immediate from A with borrow 2 2 CY OV AC 94
INC A Increment A 1 1 04
INC Rn Increment register 1 1 08-0F
INC direct Increment direct byte 2 2 05
INC @ Ri Increment data memory 1 1 06-07
DECA Decrement A 1 1 14
DEC Rn Decrement Register 1 1 18-1F
DEC direct Decrement direct byte 2 2 15
DEC @RI Decrement data memory 1 1 16-17
INC DPTR Increment data pointer 1 3 A3
MUL AB Multiply A and B (unsigned; product in B:A) 1 5 CY=0 OV A4
DIV AB Divide A by B 1 5 CY=0 OV 84
(unsigned; quotient in A, remainder in B)
DA A Decimal adjust A 1 1 CY D4
Logical

ANL, Rn AND register to A 1 1 58-5F
ANL A, direct AND direct byte to A 2 2 55
ANL A, @RI AND data memory to A 1 1 56-57
ANL A, #data AND immediate to A 2 2 54
ANL direct, A AND A to direct byte 2 2 52
ANL direct, #data AND immediate data to direct byte 3 3 53
ORL A, Rn OR register to A 1 1 48-4F
ORL A, direct OR direct byte to A 2 2 45
ORL A, @RI OR data memory to A 1 1 46-47
ORL A, #data OR immediate to A 2 2 44

Page 12-2

EZ-USB FX2 Technical Reference Manual v2.1

Table 12-2. FX2 Instruction Set (Continued)

=

iff'fi*l'ﬂi&iﬁ

. R 2O Opcode
Mnemonic Description Bytes | Cycles Flags (Hex)
Affected
ORL direct, A OR A to direct byte 2 2 42
ORL direct, #data OR immediate data to direct byte 3 3 43
XRL A, Rn Exclusive-OR register to A 1 1 68-6F
XRL A, direct Exclusive-OR direct byte to A 2 2 65
XRL A, @RI Exclusive-OR data memory to A 1 1 66-67
XRL A, #data Exclusive-OR immediate to A 2 2 64
XRL direct, A Exclusive-OR A to direct byte 2 2 62
XRL direct, #data Exclusive-OR immediate to direct byte 3 3 63
CLR A Clear A 1 1 E4
CPLA Complement A 1 1 F4
SWAP A Swap nibbles of a 1 1 C4
RL A Rotate A left 1 1 23
RLC A Rotate A left through carry 1 1 CY 33
RR A Rotate A right 1 1 03
RRC A Rotate A right through carry 1 1 CY 13
Data Transfer
MOV A, Rn Move register to A 1 1 E8-EF
MOV A, direct Move direct byte to A 2 2 E5
MOV A, @RI Move data byte at Rito A 1 1 E6-E7
MOV A, #data Move immediate to A 2 2 74
MOV Rn, A Move A to register 1 1 F8-FF
MOV Rn, direct Move direct byte to register 2 2 A8-AF
MOV Rn, #data Move immediate to register 2 2 78-7TF
MQV direct, A Move A to direct byte 2 2 F5
MOV direct, Rn Move register to direct byte 2 2 88-8F
MOV direct, direct Move direct byte to direct byte 3 3 85
MQV direct, @Ri Move data byte at Ri to direct byte 2 2 86-87
MOV direct, #data Move immediate to direct byte 3 3 75
MOV @Ri, A MOV A to data memory at address Ri 1 1 F6-F7
MOV @RI, direct Move direct byte to data memory 2 2 A6-A7
at address Ri
MOV @RI, #data Move immediate to data memory 2 2 76-77
at address Ri
MOV DPTR, #datal6 | Move 16-bit immediate to data pointer 3 3 90
MOVC A, @A+DPTR | Move code byte at address DPTR+A to A 1 3 93
MOVC A, @A+PC Move code byte at address PC+A to A 1 3 83
MOVX A, @Ri Move external data at address Ri to A 1 2-9*% E2-E3
MOVX A, @DPTR Move external data at address DPTR to A 1 2-9* EO
Chapter 12. Instruction Set Page 12-3

EZ-USB FX2 Technical Reference Manual

Table 12-2. FX2 Instruction Set (Continued)

. R 2O Opcode
Mnemonic Description Bytes |Cycles | Flags (Hex)
Affected
MOVX @Ri, A Move A to external data at address Ri 1 2-9* F2-F3
MOVX @DPTR, A Move A to external data at address DPTR 1 2-9*% FO
PUSH direct Push direct byte onto stack 2 2 Co
POP direct Pop direct byte from stack 2 2 DO
XCHA, Rn Exchange A and register 1 1 C8-CF
XCH A, direct Exchange A and direct byte 2 2 C5
XCH A, @Ri Exchange A and data memory 1 1 C6-C7
at address Ri
XCHD A, @RI Exchange the low-order nibbles 1 1 D6-D7
of A and data memory at address Ri
* Number of cycles is user-selectable. See Section 12.1.2, "Stretch Memory Cycles (Wait States)".
Boolean
CLRC Clear carry 1 1 CY=0 C3
CLR bit Clear direct bit 2 2 Cc2
SETBC Set carry 1 1 Cy=1 D3
SETB bit Set direct bit 2 2 D2
CPLC Complement carry 1 1 CcYy B3
CPL hit Complement direct bit 2 2 B2
ANL C, bit AND direct bit to carry 2 2 CY 82
ANL C, /bit AND inverse of direct bit to carry 2 2 CcY BO
ORL C, hit OR direct bit to carry 2 2 CY 72
ORL C, /bit OR inverse of direct bit to carry 2 2 CY AO
MOV C, bit Move direct bit to carry 2 2 CY A2
MOV bit, C Move carry to direct bit 2 2 92
Branching

ACALL addrll Absolute call to subroutine 2 3 11-F1
LCALL addr16 Long call to subroutine 3 4 12
RET Return from subroutine 1 4 22
RETI Return from interrupt 1 4 32
AJMP addrll Absolute jump unconditional 2 3 01-E1
LIMP addr16 Long jump unconditional 3 4 02
SIMP rel Short jump (relative address) 2 3 80
JC rel Jumpif carry =1 2 3 40
JINC rel Jump if carry =0 2 3 50
JB bit, rel Jump if direct bit =1 3 4 20
JNB bit, rel Jump if direct bit =0 3 4 30
JBC bit, rel Jump if direct bit = 1, then clear the bit 3 4 10
JMP @ A+DPTR Jump indirect to address DPTR+A 1 3 73

Page 12-4

EZ-USB FX2 Technical Reference Manual v2.1

ié‘ﬂr-n ESS

Table 12-2. FX2 Instruction Set (Continued)

PSW Opcode
Mnemonic Description Bytes | Cycles Flags (FI)—lex)
Affected
JZ rel Jump if accumulator = 0 2 3 60
JINZ rel Jump if accumulator is non-zero 2 3 70
CJINE A, direct, rel Compare A to direct byte; jump if not equal 3 4 CY B5
CJINE A, #d, rel Compare A to immediate; jump if not equal 3 4 CY B4
CJINE Rn, #d, rel Compare register to immediate; 3 4 CY B8-BF
jump if not equal
CINE @ Ri, #d, rel Compare data memory to immediate; 3 4 CY B6-B7
jump if not equal
DJINZ Rn, rel Decrement register; jump if not zero 2 3 D8-DF
DJNZ direct, rel Decrement direct byte; jump if not zero 3 4 D5
Miscellaneous
NOP No operation ‘ 1 ‘ 1 ‘ 00
There is an additional reserved opcode (A5) that performs the same function as NOP.
All mnemonics are copyright 1980, Intel Corporation.

12.1.1 Instruction Timing

Instruction cycles in the FX2 are 4 clock cycles in length, as opposed to the 12 clock cycles per
instruction cycle in the standard 8051. For full details of the instruction-cycle timing differences
between the FX2 and the standard 8051, see Section 11.3, "Performance Overview".

In the standard 8051, all instructions except for MUL and DIV take one or two instruction cycles to
complete. In the FX2, instructions can take between one and five instruction cycles to complete.
For calculating the timing of software loops, etc., use the “Cycles” column from Table 12-2. The
“Bytes” column indicates the number of bytes occupied by each instruction.

By default, the FX2's timer/counters run at 12 clock cycles per increment so that timer-based
events have the same timing as with the standard 8051. The timers can also be configured to run
at 4 clock cycles per increment to take advantage of the higher speed of the FX2's CPU.

12.1.2 Stretch Memory Cycles (Wait States)

The FX2 can execute a MOVX instruction in as few as 2 instruction cycles. However, it is some-
times desirable to stretch this value (for example to access slow memory or slow memory-mapped
peripherals such as USARTSs or LCDs). The FX2's “stretch memory cycle” feature enables FX2
firmware to adjust the speed of data memory accesses (program-memory code fetches are not
affected).

Chapter 12. Instruction Set Page 12-5

EZ-USB FX2 Technical Reference Manual

The three LSBs of the Clock Control Register (CKCON, at SFR location Ox8E) control the stretch
value; stretch values between zero and seven may be used. A stretch value of zero adds zero
instruction cycles, resulting in MOVX instructions which execute in two instruction cycles. A stretch
value of seven adds seven instruction cycles, resulting in MOVX instructions which execute in nine
instruction cycles. The stretch value can be changed dynamically under program control.

At power-on-reset, the stretch value defaults to one (three-cycle MOVX); for the fastest data mem-
ory access, FX2 software must explicitly set the stretch value to zero. The stretch value affects
only data memory access (not program memory).

The stretch value affects the width of the read/write strobe and all related timing. Using a higher
stretch value results in a wider read/write strobe, which allows the memory or peripheral more time
to respond.

Table 12-3 lists the data memaory access speeds for stretch values zero through seven. MD2-0 are
the three LSBs of the Clock Control Register (CKCON.2-0). The strobe width timing shown is typi-
cal.

CPUCS.4:3 sets the basic clock reference for the FX2. These bits can be modified by FX2 firm-
ware at any time. At power-on-reset, CPUCS.4:3 is set to ‘00’ (12 Mhz).

Table 12-3. Data Memory Stretch Values

MOVX Read/Write Strobe Width Strobe Width Strobe Width
MD2 | MD1 | MDO |Instruction | Strobe Width @ 12MHz @ 24MHz @ 48MHz

Cycles (Clocks) CPUCS.4:3=00|CPUCS.4:3=01|CPUCS.4:3=10

0 0 0 2 2 167 ns 83.3ns 41.7 ns

0 0 1 3 (default) 4 333 ns 167 ns 83.3ns

0 1 0 4 8 667 ns 333 ns 167 ns

0 1 1 5 12 1000 ns 500 ns 250 ns

1 0 0 6 16 1333 ns 667 ns 333 ns

1 0 1 7 20 1667 ns 833 ns 417 ns

1 1 0 8 24 2000 ns 1000 ns 500 ns

1 1 1 9 28 2333 ns 1167 ns 583 ns

Page 12-6

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

12.1.3 Dual Data Pointers

The FX2 employs dual data pointers to accelerate data memory block moves. The standard 8051
data pointer (DPTR) is a 16-bit pointer used to address external data RAM or peripherals. The FX2
maintains the standard data pointer as DPTRO at the standard SFR locations 0x82 (DPLO) and
0x83 (DPHO); it is not necessary to modify existing code to use DPTRO.

The FX2 adds a second data pointer (DPTR1) at SFR locations 0x84 (DPL1) and 0x85 (DPH1).
The SEL bit (bit O of the DPTR Select Register, DPS, at SFR 0x86), selects the active pointer.
When SEL = 0, instructions that use the DPTR will use DPLO:DPHO. When SEL = 1, instructions
that use the DPTR will use DPL1:DPH1. No other bits of the DPS SFR are used.

All DPTR-related instructions use the data pointer selected by the SEL Bit. Switching between the
two data pointers by toggling the SEL bit relieves FX2 firmware from the burden of saving source
and destination addresses when doing a block move; therefore, using dual data pointers provides
significantly increased efficiency when moving large blocks of data.

The fastest way to toggle the SEL bit between the two data pointers is via the “INC DPS” instruc-
tion, which toggles bit 0 of DPS between 0 and 1.

The SFR locations related to the dual data pointers are:

0x82 DPLO DPTRO low byte
0x83 DPHO DPTRO high byte
0x84 DPL1 DPTR1 low byte
0x85 DPH1 DPTR1 high byte
0x86 DPS DPTR Select (Bit 0)

12.1.4 Special Function Registers

The four SFRs listed below are related to CPU operation and program execution. Except for the
Stack Pointer SP, each of the registers is bit addressable.

0x81 SP Stack Pointer
0xDO PSW Program Status Word

OxEO ACC Accumulator Register
0xFO0 B B Register

Table 12-4 lists the functions of the PSW bits.

Chapter 12. Instruction Set Page 12-7

EZ-USB FX2 Technical Reference Manual

Table 12-4. PSW Register - SFR 0xD0

Bit Function
PSW.7 [CY - Carry flag. This is the unsigned carry bit. The CY flag is set when an arithmetic operation
results in a carry from bit 7 to bit 8, and cleared otherwise. In other words, it acts as a virtual bit
8. The CY flag is cleared on multiplication and division. See the “PSW Flags Affected” column in
Table 12-2.
PSW.6 |AC - Auxiliary carry flag. Set to 1 when the last arithmetic operation resulted in a carry into (dur-
ing addition) or borrow from (during subtraction) the high order nibble, otherwise cleared to 0 by
all arithmetic operations. See the “PSW Flags Affected” column in Table 12-2.
PSW.5 |FO - User flag 0. Available to FX2 firmware for general purpose.
PSW.4 |RSL1 - Register bank select bit 1.
PSW.3 |RSO - Register bank select bit 0.
RS1:RSO0 select a register bank in internal RAM:
RS1RS0 Bank Selected
0 0 Register bank 0, addresses 0x00-0x07
0 1 Register bank 1, addresses 0x08-0x0F
1 0 Register bank 2, addresses 0x10-0x17
1 1 Register bank 3, addresses 0x18-0x1F
PSW.2 | OV - Overflow flag. This is the signed carry bit. The OV flag is set when a positive sum exceeds
0x7F or a negative sum (in two’s complement notation) exceeds 0x80. After a multiply, OV = 1 if
the result of the multiply is greater than OxFF. After a divide, OV = 1 if a divide-by-0 occurred.
See the “PSW Flags Affected” column in Table 12-2.
PSW.1 |F1 - User flag 1. Available to FX2 firmware for general purpose.
PSW.0 [P - Parity flag. Contains the modulo-2 sum of the 8 bits in the accumulator (i.e., set to 1 when the

accumulator contains an odd number of “1” bits, set to O when the accumulator contains an even
number of “1” bits).

Page 12-8

EZ-USB FX2 Technical Reference Manual v2.1

Chapter 13 Input/Output

13.1 Introduction

The 56-pin FX2 package provides two input-output systems:

* A set of programmable 1/O pins

* A programmable I12C-compatible bus controller

The 100- and 128-pin packages additionally provide two programmable USARTSs, which are fully
described in Chapter 14, "Timers/Counters and Serial Interface.”

The 1/0O pins may be configured either for general-purpose I/O or for alternate functions (GPIF
address and data; FIFO data; USART, timer, and interrupt signals; etc.). This chapter describes the
usage of the pins in the general-purpose configuration, and the methods by which the pins may be
configured for alternate functions.

This chapter also provides both the programming information for the 12C-compatible interface and
the operating details of the EEPROM boot loader. The role of the boot loader is described in Chap-
ter 3, "Enumeration and ReNumeration™".

13.2 1/O Ports

The FX2's 1/O ports are implemented differently than those of a standard 8051.

The FX2 has up to five eight-pin bidirectional I/O ports, labeled A, B, C, D, and E. Individual /O
pins are labeled Px.n, where x is the port (A, B, C, D, or E) and n is the pin number (0 to 7).

The 100- and 128-pin FX2 packages provide all five ports; the 56-pin package provides only ports
A, B, and D.

Chapter 13. Input/Output Page 13-1

EZ-USB FX2 Technical Reference Manual

Each port is associated with a pair of registers:

* An OEx register (where x is A, B, C, D, or E), which sets the input/output direction of each
of the 8 pins (0 = input, 1 = output). See Figure 13-2.

* An IOx register (where x is A, B, C, D, or E). Values written to |IOx appear on the pins
which are configured as outputs; values read from 10x indicate the states of the 8 pins,
regardless of input/output configuration. See Figure 13-3.

Most I/O pins have alternate functions which may be selected using configuration registers (see
Tables 13-1 through 13-9). Each alternate function is unidirectional; the FX2 “knows” whether the
function is an input or an output, so when an alternate configuration is selected for an I/O pin, the
corresponding OEX bit is ignored (see Figures 13-4 and 13-5).
The default (power-on reset) state of all I/0O ports is:

« Alternate configurations off

» All'l/O pins configured as inputs

Figure 13-1 shows the basic structure of an FX2 1/O pin.

OEx Bit

— Write

IOx Bit ¢ V0 Pin >

Read

Figure 13-1. FX2 I/O Pin

Page 13-2 EZ-USB FX2 Technical Reference Manual v2.1

%E.‘ﬁ'!-'!ﬁ'l-’.’iﬁ

OEA Port A Output Enable SFR 0xB2
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEB Port B Output Enable SFR 0xB3
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEC Port C Output Enable SFR 0xB4
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OED Port D Output Enable SFR 0xB5
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEE Port E Output Enable SFR 0xB6
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Figure 13-2. I/0O Port Output-Enable Registers
Chapter 13. Input/Output Page 13-3

EZ-USB FX2 Technical Reference Manual

IOA Port A (Bit-Addressable) SFR 0x80
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/IW R/IW R/IW R/IW R/IW R/IW R/IW R/IW
X X X X X X X X
[0]=} Port B (Bit-Addressable) SFR 0x90
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/IW R/IW R/W R/W
X X X X X X X X
I0C Port C (Bit-Addressable) SFR OxAO
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
IOD Port D (Bit-Addressable) SFR 0xBO
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/IW R/IW R/IW R/IW R/IW R/IW R/IW R/IW
X X X X X X X X
IOE Port E SFR 0xB1
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/IW R/IW R/IW R/IW R/IW R/IW R/IW R/IW
X X X X X X X X

Page 13-4

Figure 13-3. I/O Port Data Registers

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

13.3 1/O Port Alternate Functions

Each 1/0 pin may be configured for an alternate (i.e., non-general-purpose 1/O) function. These
alternate functions are selected through various configuration registers, as described in the follow-

ing sections.

The 1/0O-pin logic for alternate-function outputs is slightly different than for alternate-function inputs,

as shown in Figures 13-4 (output) and 13-5 (input).

(Output)

OEX Bit

fWrite

IOx Bit

Alternate Function
—X

T—Reaol

a) General-Purpose 1/0O Configuration

Figure 13-4. 1/0-Pin Logic when Alternate Function is an OUTPUT

Alternate Function
(Output)

OEx Bit ———X

rWriteH

I0x Bit

L Read

b) Alternate-Function Configuration

Figure 13-4 shows an I/O pin whose alternate function is always an output.

In Figure 13-4a, the I/O pin is configured for general-purpose I/O. In this configuration, the alter-
nate function is disconnected and the pin functions normally.

In Figure 13-4b, the I/O pin is configured as an alternate-function output. In this configuration, the
IOx/OEXx output buffer is disconnected from the I/O pin, so writes to I0x and OEx have no effect on
the 1/0O pin. Reads from 10x, however, continue to work normally; the state of the 1/0O pin (and,

therefore, the state of the alternate function) is always available.

Chapter 13. Input/Output

Page 13-5

EZ-USB FX2 Technical Reference Manual

Alternate Function Alternate Function
(Input) (Input)

OEXx Bit OEx Bit ———X
Write » Write————X
T B
IOx Bit $—1/0 Pin> IOx Bit $—/0 Pin>>
L Read ‘ L Read ‘
a) General-Purpose I/O Configuration b) Alternate-Function Configuration

Figure 13-5. 1/0-Pin Logic when Alternate Function is an INPUT

Figure 13-5 shows an I/O pin whose alternate function is always an input.

In Figure 13-5a, the I/O pin is configured for general-purpose 1/0. There’s an important difference
between alternate-function inputs and the alternate-function outputs shown earlier in Figure 13-4:
Alternate-function inputs are never disconnected; they’re always listening.

If the alternate function’s interrupt is enabled, signals on the 1/O pin may trigger that interrupt. If the
pin is to be used only for general-purpose I/O, the alternate function’s interrupt must be disabled.

For example, suppose the PE5/INT6 pin is configured for general-purpose 1/0. Since the INT6
function is an input, the pin signal is also routed to the FX2's internal INT6 logic. If the INT6 inter-
rupt is enabled, traffic on the PE5 pin will trigger an INT6 interrupt. If this is undesirable, the INT6
interrupt should be disabled.

Of course, this side-effect can be useful in certain situations. In the case of PE5/INT6, for exam-
ple, PE5 can trigger an INT6 interrupt even if the 1/O pin is configured as an output (i.e., OEE.5 =
1), so the FX2's firmware can directly generate “external” interrupts.

In Figure 13-5b, the I/O pin is configured as an alternate-function input. Just as with alternate-
function outputs, the IOx/OEx output buffer is disconnected from the 1/O pin, so writes to IOx and
OEXx have no effect on the 1/O pin. Reads from 10x, however, continue to work normally; the state
of the I/O pin (and, therefore, the input to the alternate function) is always available.

Page 13-6 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

13.3.1 Port A Alternate Functions

Alternate functions for the Port A pins are selected by bits in three registers, as shown in Tables
13-1 and 13-2.

Table 13-1. Register Bits Which Select Port A Alternate Functions

b7 b6 b5 b4 b3 b2 bl b0
PORTACFG R FLAGD | sLcs! INT1 INTO
(OxE670)
IFCONFIG IFCFG1 | IFCFGO
(OxE601)
WAKEUPCS WUZ2EN
(OxE682)
Note 1: Although the SLCS alternate function is selected by bit 6 of PORTACFG, that function does not appear on

pin PA6. Instead, the SLCS function appears on pin PA7 (see Table13-2).

Table 13-2. Port A Alternate-Function Configuration

Port A Pin Altern.ate A_Iternate Function AIternate_Funqtion
Function is Selected By... is Described in...

PA.O INTO PORTACFG.0 = 1 Chapter 4
PA.1 INT1 PORTACFG.1=1 Chapter 4
PA.2 SLOE IFCFG1:0 = 11 Chapter 9
PA.3 Wwu2l WUZ2EN = 1 Chapter 6
PA.4 FIFOADRO IFCFG1:0 = 11 Chapter 9
PA.5 FIFOADR1 IFCFG1:0 = 11 Chapter 9
PA.6 PKTEND IFCFG1:0 = 11 Chapter 9

ELAGD? PORTACFG.7 =1 Chapter 9
PAT sLcs? PORTACFG.6 = 1 and Chapter 9

IFCFG1:0 = 11

Note 1: When PA.3 is configured for alternate function WUZ2, it continues to function as a general-purpose input pin
as well. See Section 6.4.1, "WU2 Pin" for more information.

Note 2: Although PA.7’s alternate function FLAGD is selected via the PORTACFG register, the state of the FLAGD
output is undefined unless IFCFG1:0 = 11.

Note 3: FLAGD takes priority over SLCS if PORTACFG.6 and PORTACFG.7 are both set to 1.

Chapter 13. Input/Output Page 13-7

EZ-USB FX2 Technical Reference Manual

13.3.2 Port B and Port D Alternate Functions

When IFCFGL1 = 1, all eight Port B pins are configured for an alternate configuration (FIFO Data

7:0).

If any of the FIFOs are set to 16-bit mode (via the WORDWIDE bits in the EPXFIFOCFG regis-
ters), all eight Port D pins are also configured for an alternate configuration (FIFO Data 15:8). See
Tables 13-3, 13-4, and 13-5.

NG

If all WORDWIDE bits are cleared to O (i.e., if all four FIFOs are operating in 8-bit mode), the eight
Port D pins may be used as general-purpose I/O pins even if IFCFG1 = 1.

Table 13-3. Register Bits Which Select Port B and Port D Alternate Functions

b7 b6 b5 b4 b3 b2 bl bo
IFCONFIG IFCFG1
(0XE601)
EP2FIFOCFG WORDWIDE
(OXE618)
EPAFIFOCFG WORDWIDE
(0XE619)
EP6FIFOCFG WORDWIDE
(OXEB1A)
EP8FIFOCFG WORDWIDE
(OXE61B)
Table 13-4. Port B Alternate-Function Configuration
Port B Pin Alternate Alternate Function |Alternate Function
Function is Selected By... is Described in...
PB.7:0 FD[7:0] IFCFG1 =1 Chapter 9
Table 13-5. Port D Alternate-Function Configuration
Port D Pin Alternate Alternate Function |Alternate Function
Function is Selected By... is Described in...
PD.7:0 FD[15:8] IFCFG1 =1 and Chapter 9
any WORDWIIDE bit = 1

Page 13-8

EZ-USB FX2 Technical Reference Manual v2.1

13.3.3 Port C Alternate Functions

iul ESS

Each Port C pin may be individually configured for an alternate function by setting a bit in the
PORTCCEFG register, as shown in Tables 13-6 and 13-7.

Table 13-6. Register Bits Which Select Port C Alternate Functions

| b7 b6 b5 b3 b2 b1 b0
PORTCCFG || GPIFA7 | GPIFA6 | GPIFAS5 | GPIFA4 | GPIFA3 | GPIFA2 | GPIFA1 | GPIFAO
(0XE671)
Table 13-7. Port C Alternate-Function Configuration
Port C Pin Altern.ate A_Iternate Function AIternate_Funqtion
Function is Selected By... is Described in...
PC.0 GPIFAQL PORTCCFG.0 =1 Chapter 10
PC.1 GPIEA1L PORTCCFG.1=1 Chapter 10
PC.2 GPIEA2! PORTCCFG.2=1 Chapter 10
PC.3 GPIEA3L PORTCCFG.3=1 Chapter 10
PC.4 GPIFA4L PORTCCFG.4=1 Chapter 10
PC.5 GPIEA5L PORTCCFG.5=1 Chapter 10
PC.6 GPIEA6? PORTCCFG.6 =1 Chapter 10
PC.7 GPIEAT7! PORTCCFG.7=1 Chapter 10

Note 1: Although the Port C alternate functions GPIFAQ:7 are selected via the PORTCCFG register, the states of
the GPIFAOQ:7 outputs are undefined unless IFCFG1:0 = 10.

Chapter 13. Input/Output

Page 13-9

EZ-USB FX2 Technical Reference Manual

13.3.4 Port E Alternate Functions

Each Port E pin may be individually configured for an alternate function by setting a bit in the
PORTECFG register.

If the GSTATE bit in the IFCONFIG register is set to 1, the PE.2:0 pins are automatically config-

ured as GPIF Status pins GSTATE[2:0], regardless of the PORTECFG.2:0 settings. In other
words, GSTATE overrides PORTECFG.2:0. See Tables 13-8 and 13-9.

Table 13-8. Register Bits Which Select Port E Alternate Functions

b7 b6 b5 b4 b3 b2 b1 bo
PORTECFG | GPIFA8 T2EX INT6 RXD1OUT |RXDOOUT | T20UT | T1OUT | TOOUT
(0XE671)
IFCONFIG GSTATE
(0XE601)
Table 13-9. Port E Alternate-Function Configuration
. Alternate Alternate Function |Alternate Function
Port E Pin
Function is Selected By... is Described in...
PE.O ToouT: PORTECFG.0 = 1 and Chapter 14
GSTATE=0
PE.1 T10UT: PORTECFG.1 = 1 and Chapter 14
GSTATE=0
PE.2 T20UT: PORTECFG.2 = 1 and Chapter 14
GSTATE=0
PE.3 RXDOOUT PORTECFG.3=1 Chapter 14
PE.4 RXD1OUT PORTECFG.4=1 Chapter 14
PE.5 INT6 PORTECFG.5=1 Chapter 4
PE.6 T2EX PORTECFG.6 =1 Chapter 14
PE.7 GPIFAS? PORTECFG.7 =1 Chapter 10

Note 1: If GSTATE is set to 1, these settings are overridden and PE.2:0 are all automatically configured as GPIF
Status pins (see Chapter 10).

Note 2: Although the PE.7 alternate function GPIFAS is selected via the PORTECFG register, the state of the
GPIFA8 output is undefined unless IFCFG1:0 = 10.

Page 13-10

EZ-USB FX2 Technical Reference Manual v2.1

Chapter 13. Input/Output

Table 13-10. IFCFG Selection of Port I/O Pin Functions

IFCFG1:0 =00 |IFCFG1:0 =10 |IFCFG1:0 =11
(Ports) (GPIF Master) | (Slave FIFO)
PD7 FD[15] FD[15]

PD6 FD[14] FD[14]

PD5 FD[13] FD[13]

PD4 FD[12] FD[12]

PD3 FD[11] FD[11]

PD2 FD[10] FD[10]

PD1 FD[9] FD[9]

PDO FD[8] FD[8]

PB7 FD[7] FD[7]

PB6 FD[6] FD[6]

PB5 FD[5] FD[5]

PB4 FD[4] FD[4]

PB3 FD[3] FD[3]

PB2 FD[2] FD[2]

PB1 FD[1] FD[1]

PBO FD[0] FD[0]

INTO / PAO INTO / PAO INTO / PAO
INT1/PA1L INT1/PA1 INTL/PA1
PA2 PA2 SLOE

WU2 / PA3 WU2 / PA3 WU2 / PA3

PA4 PA4 FIFOADRO
PA5 PA5 FIFOADR1
PA6 PA6 PKTEND

PA7 PA7 PA7 / FLAGD / SLCS
PC7:0 PC7:0 PC7:0

PE7:0 PE7:0 PE7:0

Note: Signals shown in bold type do not change with IFCFG;

they are shown for completeness.

; CYPRESS

Page 13-11

EZ-USB FX2 Technical Reference Manual

13.4 12C-Compatible Bus Controller

The 12C-compatible bus controller uses the SCL (Serial Clock) and SDA (Serial Data) pins, and
performs two functions:

e General-purpose interfacing to 12C peripherals

* Boot loading from a serial EEPROM
NG
Pullup resistors are required on the SDA and SCL lines, even if nothing is connected to the
12C-compatible bus. Each line should be pulled up to Vcc through a 2.2K ohm resistor.

The bus frequency defaults to approximately 100 KHz for compatibility; it can be configured to run
four times faster for devices that support the higher speed.

13.4.1 Interfacing to 12C Peripherals

SDAi D7><D6><D5><D4><D3><Dz><m><D0AF<

SCL 1 2 3 4 5 6 7 8 9

Figure 13-6. General I2C Transfer

Figure 13-6 illustrates the waveforms for an 12C transfer. SCL and SDA are open-drain FX2 pins,
which must be pulled up to Vcc with external resistors. The FX2 is a bus master only, meaning that
it synchronizes data transfers by generating clock pulses on SCL. Once the master drives SCL
low, external slave devices can hold SCL low to extend clock-cycle times.

To synchronize 12C data, serial data (SDA) is permitted to change state only while SCL is low, and
must be valid while SCL is high. Two exceptions to this rule are used to generate START and
STOP conditions: a START condition is defined as a high-to-low transition on SDA while SCL is
high, and a STOP condition is defined as a low-to-high transition on SDA while SCL is high. Data
is sent MSB first. During the last bit time (clock #9 in Figur e13-6), the master floats the SDA line
to allow the slave to acknowledge the transfer by pulling SDA low.

Multiple Bus Masters — The FX2 acts only as a bus master, never as a slave. Conflicts with a second master
can be detected, however, by checking for BERR=1 (see Section 13.4.2.2, "Status
Bits").

Page 13-12 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

start
SDA SA3 >< SA2 >< SAl >< SAO >< DA2 >< DAL >< DAO RW | ACK D7 | D6
SCL 1 2 3 4 5 6 7 8 9 10 11

Figure 13-7. Addressing an I2C Peripheral

Each peripheral (slave) device on the 12C bus has a unique address. The first byte of an 12C trans-
action contains the address of the desired peripheral. Figure 13-7 shows the format for this first
byte, which is sometimes called a control byte.

The FX2 sends the bit sequence shown in Figure 13-7 to select the peripheral at a particular
address, to establish the transfer direction (using R/W), and to determine if the peripheral is
present by testing for ACK.

The four most significant bits (SA3:0) are the peripheral chip’s slave address. [12C devices are pre-
assigned slave addresses by device type. Slave address 1010, for example, is assigned to
EEPROMSs. The next three bits (DA2:0) usually reflect the states of the peripheral’s device address
pins. Devices with three address pins can be strapped to allow eight distinct addresses for the
same device type, which allows, for example, up to eight identical serial EEPROMSs to be individu-
ally addressed.

The eighth bit (R/W) sets the direction for the ensuing data transfer (1 = master read, 0 = master
write). Most address transfers are followed by one or more data transfers, with the STOP condition
generated after the last data byte is transferred.

In Figure 13-7, a READ transfer follows the address byte (at clock 8, the master sets the R/W bit
high, indicating READ). At clock 9, the peripheral device responds to its address by asserting ACK.
At clock 10, the master floats SDA and issues SCL pulses to clock in SDA data supplied by the
slave.

13.4.2 Registers

The three registers shown in Figur e13-8 are used to conduct transfers over the 12C-compatible
bus.

Data is transferred to and from the bus through the I2DAT register. The 12CS register controls the
transfers and reports various status conditions. I2CTL configures the bus.

Chapter 13. Input/Output Page 13-13

EZ-USB FX2 Technical Reference Manual

12CS [2C-Compatible Bus Control and E678
Status
b7 b6 b5 b4 b3 b2 bl b0
START STOP LASTRD ID1 IDO BERR ACK DONE
R/W R/W R/W R R R R R
0 0 0 X X 0 0 0
I2DAT [2C-Compatible Bus Data E679
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
I2CTL [2C-Compatible Bus Mode E67A
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 STOPE | 400KHZ
R R R/W R/W
0 0 0 0 0 0 0 0

Figure 13-8. 12C-Compatible Registers

13.4.2.1 Control Bits
START

When START = 1, the next write to I2DAT generates the START condition followed by the serial-
ized byte of data in I2DAT. The START bit is automatically cleared to 0 during the ACK interval
(clock 9 in Figure 13-6).

STOP

When STOP = 1, a stop condition is generated. If the bus is idle when the STOP bit is set, the
STOP condition is generated immediately; otherwise, the STOP condition is generated after the
ACK phase of the current transfer. The STOP bit is automatically cleared after completing the
STOP condition.

Page 13-14 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS
NG

While the 12C-Compatible Bus controller is generating the “stop” condition, it ignores accesses to
the 12CS and I2DAT registers. Firmware should therefore check the STOP Bit for zero before writ-
ing new data to 12CS or I12DAT.

An interrupt request is available to signal that the STOP condition is complete.

LASTRD

The master reads data by floating the SDA line and issuing clock pulses on the SCL line; after
every eight bits, it drives SDA low for one clock to indicate ACK. To signal the last byte of a multi-
byte transfer, the master floats SDA at ACK time to instruct the slave to stop sending.

When LASTRD = 1, the FX2 will float the SDA line after the next read transfer. The LASTRD bit is
automatically cleared at the end of the transfer (at ACK time).

NG
Setting LASTRD does not automatically generate a STOP condition. At the end of a read transfer,
the STOP bit should also be set.

13.4.2.2 Status Bits

After a byte transfer, the FX2 updates the three status bits DONE, ACK, and BERR. If no STOP
condition was transmitted, they are updated at ACK time; if a STOP condition was transmitted,
they are updated after the STOP.

DONE

The FX2 sets this bit whenever it completes a byte transfer. The FX2 also generates an interrupt
request when it sets the DONE bit. The DONE bit is automatically cleared when the 12DAT register
is read or written, and the interrupt request bit is automatically cleared whenever the [2CS or
I2DAT registers are read or written.

ACK

Every ninth SCL of a write transfer, the slave indicates reception of the byte by asserting ACK. The
FX2 floats SDA during this time, samples the SDA line, and updates the ACK bit with the comple-
ment of the detected value. ACK=1 indicates acknowledge, and ACK=0 indicates not-acknowl-
edge. The ACK bit should be ignored for read transfers on the bus.

BERR

This bit indicates a bus error. BERR=1 indicates that there was bus contention, which results when
an outside device drives the bus when it shouldn’t, or when another bus master wins arbitration

and takes control of the bus. When a bus error is detected, the current transfer is immediately can-
celled, the FX2 floats the SCL and SDA lines, and the bus controller is disabled until a STOP con-

Chapter 13. Input/Output Page 13-15

EZ-USB FX2 Technical Reference Manual

dition is detected on the bus. BERR is automatically cleared when the firmware reads or writes the
I2DAT register.

NG
Clearing the BERR bit (by accessing I2DAT) does not automatically re-enable the bus controller.
Once a bus error occurs, the bus controller remains disabled until a STOP condition is detected.

ID1, IDO

These bits are automatically set by the boot loader to indicate the Boot EEPROM'’s addressing
mode. They're normally used only for debug purposes; for full details, see Section 13.5.

13.4.3 Sending Data

To send a multiple-byte data record, follow these steps:

Set START=1.

Write the peripheral address and direction=0 (for write) to I2DAT.

Wait for DONE=1*. If BERR=1 or ACK=0, go to step 7.

Load I2DAT with a data byte.

Wait for DONE=1*. If BERR=1 or ACK=0 go to step 7.

Repeat steps 4 and 5 for each byte until all bytes have been transferred.
Set STOP=1.

If INT3 is enabled, each “Wait for DONE=1" step can be interrupt-driven and handled by an interrupt ser-
vice routine. See Chapter 4, "Interrupts" for more details.

TN O~ WD R

13.4.4 Receiving Data

To read a multiple-byte data record, follow these steps:

Set START=1.
Write the peripheral address and direction=1 (for read) to I12DAT.
Wait for DONE=1*. If BERR=1 or ACK=0, terminate by setting STOP=1.

Read I12DAT and discard the data. This initiates the first burst of nine SCL pulses to clock in
the first byte from the slave.

Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

Read the data from I12DAT. This initiates another read transfer.

Repeat steps 5 and 6 for each byte until ready to read the second-to-last byte.

Before reading the second-to-last I2DAT byte, set LASTRD=1.

Read the data from I2DAT. With LASTRD=1, this initiates the final byte read on the bus.
10. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

A owbdpR

© © N o »

Page 13-16 EZ-USB FX2 Technical Reference Manual v2.1

iﬁﬁ':--!tr{ss
11. Set STOP=1.

12. Read the last byte from I2DAT immediately (the next instruction) after setting the STOP bit.
This retrieves the last data byte without initiating an extra read transaction (nine more SCL
pulses) on the 12C-compatible bus.

* IfINT3 is enabled, each “Wait for DONE=1" step can be interrupt-driven and handled by an interrupt service
routine. See Chapter 4, "Interrupts"” for more details.

13.5 EEPROM Boot Loader

Whenever the FX2 is taken out of reset via the reset pin, its boot loader checks for the presence of
an EEPROM on the 12C-compatible bus. If an EEPROM is detected, the loader reads the first
EEPROM byte to determine how to enumerate (specifically, whether to supply hard-wired ID infor-
mation or read the ID from the EEPROM). The various enumeration modes are described in Chap-
ter 3, "Enumeration and ReNumeration™",

The FX2 boot loader supports two 12C-compatible EEPROM types:

« EEPROMSs with slave address 1010 that use an 8-bit internal address (e.g., 24LCO00,
241.C01/B, 24LC02/B).

« EEPROMSs with slave address 1010 that use a 16-bit internal address (e.g., 24AA64,
241.C128, 24AA256).

EEPROMs with densities up to 256 bytes require only a single address byte; larger EEPROMs
require two address bytes. The FX2 must determine which EEPROM type is connected — one or
two address bytes — so that it can properly read the EEPROM.

The FX2 uses the EEPROM device-address pins A2, Al, and AO to determine whether to send

out one or two bytes of address. As shown in Table 13-11, single-byte-address EEPROMs must be
strapped to address 000, while double-byte-address EEPROMs must be strapped to address 001.

Table 13-11. Strap Boot EEPROM Address Lines to These Values

Bytes Eéli’;g'& A2 | AL | A0
16 24L.CO0* N/A N/A N/A
128 241.C01 0 0 0
256 24L.C02 0 0 0
4K 241.C32 0 0 1
8K 24L.C64 0 0 1

* This EEPROM does not have device-address pins

Chapter 13. Input/Output Page 13-17

EZ-USB FX2 Technical Reference Manual

After determining whether a one- or two-byte-address EEPROM is attached, the FX2 reports its
results in the ID1 and IDO bits, as shown in Table 13-12.

Table 13-12. Results of Power-On-Reset EEPROM Test

ID1 IDO Meaning
0 0 No EEPROM detected
0 1 One-byte-address load EEPROM detected
1 0 Two-byte-address load EEPROM detected
1 1 Not used

Additional EEPROM devices (with slave address of 1010) can be attached to the 12C-compatible
bus for general-purpose use, as long as they are strapped for device addresses other than 000 or

001.

NG

The 24LC00 EEPROM is a special case, because it responds to all eight device addresses. If a
241.C00 is used for boot loading, no other EEPROMS with device address 1010 may be used.

Page 13-18

EZ-USB FX2 Technical Reference Manual v2.1

Chapter 14 Timers/Counters and Serial Interface

14.1 Introduction

The FX2's timer/counters and serial interface are very similar to the standard 8051’s, with some dif-
ferences and enhancements. This chapter provides technical information on configuring and using
the timer/counters and serial interface.

14.2 Timers/Counters

The FX2 includes three timer/counters (Timer 0, Timer 1, and Timer 2). Each timer/counter can
operate either as a timer with a clock rate based on the FX2's internal clock (CLKOUT) or as an
event counter clocked by the TO pin (Timer 0), T1 pin (Timer 1), or the T2 pin (Timer 2). Timers 1
and 2 may be used for baud clock generation for the serial interface (see Section 14.3 for details of
the serial interface).

N
The FX2 can be configured to operate at 12, 24, or 48 MHz. In “timer” mode, the timer/counters run
at the same speed as the FX2, and they are not affected by the CLKOE and CLKINV configuration

bits (CPUCS.1 and CPUCS.2).
Each timer/counter consists of a 16-bit register that is accessible to software as two SFRs:

e Timer 0 — THO and TLO
e Timerl—TH1land TL1

e Timer2 —TH2 and TL2

Chapter 14. Timers/Counters and Serial Interface Page 14-1

EZ-USB FX2 Technical Reference Manual

14.2.1 803x/805x Compatibility

The implementation of the timers/counters is similar to that of the Dallas Semiconductor
DS80C320. Table 14-1 summarizes the differences in timer/counter implementation between the
Intel 8051, the Dallas Semiconductor DS80C320, and the FX2.

Table 14-1. Timer/Counter Implementation Comparison

Feature Intel 8051 Dallas DS80C320 FX2
Number of timers 2 3 3
Timer 0/1 overflow No No Yes; TOOUT, TIOUT
available as output signals (one CLKOUT pulse)
Timer 2 output enable n/a Yes Yes
Timer 2 down-count enable n/a Yes No
Timer 2 overflow n/a Yes Yes; T20UT (one CLKOUT
available as output signal pulse)

14.2.2 Timers0and 1

Timers 0 and 1 operate in four modes, as controlled through the TMOD SFR (Tabl e14-2) and the
TCON SFR (Table 14-3). The four modes are:

e 13-bit timer/counter (mode 0)
* 16-bit timer/counter (mode 1)
e 8-bit counter with auto-reload (mode 2)

» Two 8-bit counters (mode 3, Timer 0 only)

Page 14-2 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 1

Mode 0 operation is illustrated in Figure 14-1.

In mode O, the timer is configured as a 13-bit counter that uses bits 0-4 of TLO (or TL1) and all 8
bits of THO (or TH1). The timer enable bit (TRO/TR1) in the TCON SFR starts the timer. The C/T Bit
selects the timer/counter clock source: either CLKOUT or the TO/T1 pins.

The timer counts transitions from the selected source as long as the GATE Bit is 0, or the GATE Bit
is 1 and the corresponding interrupt pin (INTO or INT1) is 1.

When the 13-bit count increments from Ox1FFF (all ones), the counter rolls over to all zeros, the
TFO (or TF1) Bit is set in the TCON SFR, and the TOOUT (or T1OUT) pin goes high for one clock
cycle.

The upper 3 bits of TLO (or TL1) are indeterminate in mode 0 and should be ignored.

o TOM (or T1M)
Divide by 12

CLKOUT 1 0 _ CLK TLO (or TL1)
CIT 0 4 7
Divide by 4 | T4 sIrrrrr
Mode Ol

TO (or T1) pin -7

TRO (or TR1) Mode 1T

o THO (or TH1) 7

. Dc m

INTO (or
INT1) pin TFO (or TF1) |— INT
|

|
———p To Serial Port

(Timer 1 only)

Figure 14-1. Timer 0/1 - Modes 0 and 1

14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 1

In mode 1, the timer is configured as a 16-bit counter. As illustrated in Figure 14-1, all 8 bits of the
LSB Register (TLO or TL1) are used. The counter rolls over to all zeros when the count increments
from OxFFFF. Otherwise, mode 1 operation is the same as mode 0.

Chapter 14. Timers/Counters and Serial Interface Page 14-3

EZ-USB FX2 Technical Reference Manual

Table 14-2. TMOD Register — SFR 0x89

Bit Function

TMOD.7 GATEL - Timer 1 gate control. When GATEL = 1, Timer 1 will clock only whenINT1 =1 and
TR1 (TCON.6) = 1. When GATEL = 0, Timer 1 will clock only when TR1 = 1, regardless of
the state of INT1.

TMOD.6 C/?l - Counter/Timer select. When C/T1 = 0, Timer 1 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of TLIM (CKCON.4). When C/T1 = 1, Timer 1 is clocked by high-
to-low transitions on the T1 pin.

TMOD.5 M1 - Timer 1 mode select bit 1.

TMOD.4 MO - Timer 1 mode select hit 0.

M1 MO Mode

0 0 Mode 0 : 13-bit counter

0 1 Mode 1 : 16-bit counter

1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Timer 1 stopped

TMOD.3 GATEQO - Timer 0 gate control, When GATEO = 1, Timer 0 will clock only whenINTO =1 and
TRO (TCON.4) = 1. When GATEO = 0, Timer 0 will clock only when TRO = 1, regardless of
the state of INTO.

TMOD.2 C/?O - Counter/Timer select. When C/T0 = 0, Timer O is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of TOM (CKCON.3). When C/TO = 1, Timer 0 is clocked by high-
to-low transitions on the TO pin.

TMOD.1 M1 - Timer O mode select bit 1.

TMOD.O MO - Timer 0 mode select bit 0.

Mode

Mode 0 : 13-bit counter

Mode 1 : 16-bit counter

Mode 2 : 8-bit counter with auto-reload
Mode 3 : Two 8-bit counters

I—‘I—‘OO|§
=
I—‘OHO|§

)

Page 14-4

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Table 14-3. TCON Register — SRF 0x88

Bit Function

TCON.7 TF1 - Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows; automatically
cleared when the FX2 vectors to the interrupt service routine.

TCON.6 TR1 - Timer 1 run control. 1 = Enable counting on Timer 1.

TCON.5 TFO - Timer O overflow flag. Set to 1 when the Timer 0 count overflows; automatically
cleared when the FX2 vectors to the interrupt service routine.

TCON.4 TRO - Timer O run control. 1 = Enable counting on Timer 0.

TCON.3 IE1 - Interrupt 1 edge detect. If external interrupt 1 is configured to be edge-sensitive
(IT1 =1), IE1is set when a negative edge is detected on the INT1 pin and is automat-
ically cleared when the FX2 vectors to the corresponding interrupt service routine. In
this case, IE1 can also be cleared by software. If external interrupt 1 is configured to
be level-sensitive (IT1 = 0), IEL is set when the INT1 pin is 0 and automatically
cleared when the INT1 pinis 1. In level-sensitive mode, software cannot write to IE1.

TCON.2 IT1 - Interrupt 1 type select. INT1 is detected on falling edge when IT1 = 1; INT1 is
detected as a low level when IT1 = 0.

TCON.1 IEO - Interrupt O edge detect. If external interrupt O is configured to be edge-sensitive
(ITO =1), IEO is set when a negative edge is detected on the INTO pin and is automat-
ically cleared when the FX2 vectors to the corresponding interrupt service routine. In
this case, IEO can also be cleared by software. If external interrupt 0 is configured to
be level-sensitive (ITO = 0), IEQ is set when the INTO pin is 0 and automatically
cleared when the INTO pin is 1. In level-sensitive mode, software cannot write to IEO.

TCON.O ITO - Interrupt O type select. INTO is detected on falling edge when ITO = 1; INTO is
detected as a low level when ITO = 0.

14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer O and Timer 1

In mode 2, the timer is configured as an 8-bit counter, with automatic reload of the start value on
overflow. TLO (or TL1) is the counter, and THO (or TH1) stores the reload value.

As illustrated in Figure 14-2, mode 2 counter control is the same as for mode 0 and mode 1. When
TLO/1 increments from OxFF, the value stored in THO/1 is reloaded into TLO/1.

Chapter 14. Timers/Counters and Serial Interface Page 14-5

EZ-USB FX2 Technical Reference Manual

TOM (or T1M)

Divide by 12
y 0 l

cIT
CLKOUT 1 0 TLO (or TL1)
0 7

. ~__ | RELOAD
Divide by 4 1 :>—>|||||||||||||||||—

TO (or T1) pin T

[11 |
TRO (or TRY) [(TIIITIT]

0 THO (or TH1) 7
GATE DC

INTO (or

INT1) pin :
- — To Serial Port

(Timer 1 only)

y

Figure 14-2. Timer 0/1 - Mode 2

14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 Only

In mode 3, Timer O operates as two 8-bit counters. Selecting mode 3 for Timer 1 simply stops
Timer 1.

As shown in Figur e14-3, TLO is configured as an 8-bit counter controlled by the normal Timer 0
control bits. TLO can either count CLKOUT cycles (divided by 4 or by 12) or high-to-low transitions
on the TO pin, as determined by the C/T Bit. The GATE function can be used to give counter
enable control to the INTO pin.

THO functions as an independent 8-bit counter. However, THO can only count CLKOUT cycles
(divided by 4 or by 12). The Timer 1 control and flag bits (TR1 and TF1) are used as the control
and flag bits for THO.

When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 0 uses the Timer 1 control
bit (TR1) and interrupt flag (TF1). Timer 1 can still be used for baud rate generation and the Timer
1 count values are still available in the TL1 and TH1 Registers.

Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 mode bits. To turn Timer 1 on,
set Timer 1 to mode 0, 1, or 2. To turn Timer 1 off, set it to mode 3. The Timer 1 C/T Bit and T1M
Bit are still available to Timer 1. Therefore, Timer 1 can count CLKOUT/4, CLKOUT/12, or high-to-
low transitions on the T1 pin. The Timer 1 GATE function is also available when Timer O is in
mode 3.

Page 14-6 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

TOM

Divide by 12
y 0 l

CLKOUT _
! o o e v
Divide by 4 4] D IIIIrr—

TFO —» INT

TO pin

TRO

GATE DC

INTO pin }0 THO 7

TR1

TF1 —» INT

Figure 14-3. Timer O - Mode 3

14.2.3 Timer Rate Control

By default, the FX2 timers increment every 12 CLKOUT cycles, just as in the standard 8051. Using
this default rate allows existing application code with real-time dependencies, such as baud rate, to
operate properly.

Applications that require fast timing can set the timers to increment every 4 CLKOUT cycles
instead, by setting bits in the Clock Control Register (CKCON) at SFR location Ox8E. (See
Table 14-4).

Each timer’s rate can be set independently. These settings have no effect in counter mode.

Table 14-4. CKCON (SFR 0x8E) Timer Rate Control Bits

Bit Function

CKCON.5 T2M - Timer 2 clock select. When T2M = 0, Timer 2 uses CLKOUT/12 (for
compatibility with standard 8051); when T2M = 1, Timer 2 uses CLKOUT/4.
This bit has no effect when Timer 2 is configured for baud rate generation.

CKCON.4 T1M - Timer 1 clock select. When T1M = 0, Timer 1 uses CLKOUT/12 (for
compatibility with standard 8051); when T1M = 1, Timer 1 uses CLKOUT/4.

CKCON.3 TOM - Timer O clock select. When TOM = 0, Timer 0 uses CLKOUT/12 (for
compatibility with standard 8051); when TOM = 1, Timer 0 uses CLKOUT/4.

Chapter 14. Timers/Counters and Serial Interface Page 14-7

EZ-USB FX2 Technical Reference Manual

14.2.4 Timer 2

Timer 2 runs only in 16-bit mode and offers several capabilities not available with Timers 0 and 1.
The modes available for Timer 2 are:

16-bit timer/counter

e 16-bit timer with capture

» 16-bit timer/counter with auto-reload

Baud rate generator

The SFRs associated with Timer 2 are:

« T2CON (SFR 0xC8) — Timer/Counter 2 Control register, (see Table 14-5).

* RCAP2L (SFR 0xCA) — Used to capture the TL2 value when Timer 2 is configured for
capture mode, or as the LSB of the 16-bit reload value when Timer 2 is configured for
auto-reload mode.

« RCAP2H (SFR 0xCB) — Used to capture the TH2 value when Timer 2 is configured for
capture mode, or as the MSB of the 16-bit reload value when Timer 2 is configured for
auto-reload mode.

e TL2 (SFR 0xCC) — Lower 8 bits of the 16-bit count.

e TH2 (SFR 0xCD) — Upper 8 bits of the 16-bit count.

Page 14-8 EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s

Table 14-5. T2CON Register — SFR 0xC8

Bit Function

T2CON.7 | TF2 - Timer 2 overflow flag. Hardware will set TF2 when the Timer 2 overflows from OxFFFF.
TF2 must be cleared to 0 by the software. TF2 will only be set to a 1 if RCLK and TCLK are
both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.

T2CON.6 | EXF2 - Timer 2 external flag. Hardware will set EXF2 when a reload or capture is caused by
a high-to-low transition on the T2EX pin, and EXEN2 is set. EXF2 must be cleared to 0 by
software. Writing a 1 to EXF2 forces a Timer 2 interrupt if enabled.

T2CON.5 | RCLK - Receive clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port 0
timing of received data in serial mode 1 or 3. RCLK=1 selects Timer 2 overflow as the
receive clock; RCLK=0 selects Timer 1 overflow as the receive clock.

T2CON.4 | TCLK - Transmit clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port 0
timing of transmit data in serial mode 1 or 3. TCLK=1 selects Timer 2 overflow as the trans-
mit clock; TCLK=0 selects Timer 1 overflow as the transmit clock.

T2CON.3 | EXENZ2 - Timer 2 external enable. EXEN2=1 enables capture or reload to occur as a result of
a high-to-low transition on the T2EX pin, if Timer 2 is not generating baud rates for the serial
port. EXEN2=0 causes Timer 2 to ignore all external events on the T2EX pin.

T2CON.2 | TR2 - Timer 2 run control flag. TR2=1 starts Timer 2; TR2=0 stops Timer 2.

T2CON.1 C/T2 - Counter/Timer select. When C/T2 =1, Timer 2 is clocked by high-to-low transitions on
the T2 pin.When C/T2 = 0 in modes 0, 1, or 2, Timer 2 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of T2M (CKCON.5). When C/T2 = 0 in mode 3, Timer 2 is
clocked by CLKOUT/2, regardless of the state of CKCON.5.

T2CON.0 | CP/RL2 - Capture/reload flag. When CP/ﬁZzl,T_imer 2 captures occur on high-to-low tran-
sitions of the T2EX pin, if EXEN2 = 1. When CP/RL2 = 0, auto-reloads occur when Timer 2
overflows or when high-to-low transitions occur on the T2EX pin, if EXEN2 = 1. If either
RCLK or TCLK is set to 1, CP/RL2 will not function and Timer 2 will operate in auto-reload
mode following each overflow.

14.2.4.1 Timer 2 Mode Control

Table 14-6 summarizes how the T2CON bits determine the Timer 2 mode.

Table 14-6. Timer 2 Mode Control Summary

TR2 TCLK | RCLK CP/RL2 Mode
0 X X X Timer 2 stopped
1 1 X X Baud rate generator
1 X 1 X Baud rate generator
1 0 0 0 16-bit timer/counter with auto-reload
1 0 0 1 16-bit timer/counter with capture
X =Don't care

Chapter 14. Timers/Counters and Serial Interface Page 14-9

EZ-USB FX2 Technical Reference Manual

14.2.5 Timer 2 — 16-Bit Timer/Counter Mode

Figure 14-4 illustrates how Timer 2 operates in timer/counter mode with the optional capture fea-
ture. The C/T2 Bit determines whether the 16-bit counter counts CLKOUT cycles (divided by 4 or
12), or high-to-low transitions on the T2 pin. The TR2 Bit enables the counter. When the count
increments from OXFFFF, the TF2 flag is set and the T20UT pin goes high for one CLKOUT cycle.

14.2.5.1 Timer 2 — 16-Bit Timer/Counter Mode with Capture

The Timer 2 capture mode (Figure 14-4) is the same as the 16-bit timer/counter mode, with the
addition of the capture registers and control signals.

The CP/RL2 Bit in the T2CON SFR enables the capture feature. When CP/RL2 = 1, a high-to-low
transition on the T2EX pin when EXEN2 = 1 causes the Timer 2 value to be loaded into the cap-
ture registers RCAP2L and RCAP2H.

Divide by 12 T2M CPRL2=1

CLKOUT 1 T 0 C/T2

~— CcLk O 78 15
Divide by 4 1 3_4 TL2 | TH2 =
T HEEEEEEEEEEEEEN
T2 pin |
P [TT T T T T T T T ITTT]
TR2 [RCAP2L | RCAP2H |
0 78 15
EXEN2 TF2 |
| CAPTURE
) »| EXF2 _D—> INT
T2EX pin >——] J "

Figure 14-4. Timer 2 - Timer/Counter with Capture

14.2.6 Timer 2 — 16-Bit Timer/Counter Mode with Auto-Reload

When CP/RL2 = 0, Timer 2 is configured for the auto-reload mode illustrated in Figur e14-5. Con-
trol of counter input is the same as for the other 16-bit counter modes. When the count increments
from OxFFFF, Timer 2 sets the TF2 flag and the starting value is reloaded into TL2 and TH2. Soft-
ware must preload the starting value into the RCAP2L and RCAP2H registers.

When Timer 2 is in auto-reload mode, a reload can be forced by a high-to-low transition on the
T2EX pin, if enabled by EXEN2 = 1.

Page 14-10 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

T2M CP/RL2 =0

Divide by 12 W

CLKOUT —
1 T 0 cIT2 CLK 78 15

J 0
Divide by 4 1 TL2 | TH2 I
T HEREEEREEEEREEEN
T2 pin
P [T T TT T T TITTTITTT]
TR2 | RCAP2L | RCAP2H |
0 78 15
EXENZ—L TF2 |«
) o] —) >
EXF2 INT
T2EX pin >—— "]

Figure 14-5. Timer 2 - Timer/Counter with Auto Reload

14.2.7 Timer 2 — Baud Rate Generator Mode

Setting either RCLK or TCLK to 1 configures Timer 2 to generate baud rates for Serial Port 0 in
serial mode 1 or 3. Figure 14-6 is the functional diagram for the Timer 2 baud rate generator mode.
In baud rate generator mode, Timer 2 functions in auto-reload mode. However, instead of setting
the TF2 flag, the counter overflow is used to generate a shift clock for the serial port function. As in
normal auto-reload mode, the overflow also causes the pre-loaded start value in the RCAP2L and
RCAP2H Registers to be reloaded into the TL2 and TH2 Registers.

When either TCLK =1 or RCLK =1, Timer 2 is forced into auto-reload operation, regardless of the
state of the CP/RL2 Bit. Timer 2 is used as the receive baud clock source when RCLK=1, and as
the transmit baud clock source when TCLK=1.

When operating as a baud rate generator, Timer 2 does not set the TF2 Bit. In this mode, a Timer
2 interrupt can only be generated by a high-to-low transition on the T2EX pin setting the EXF2 Bit,
and only if enabled by EXEN2 = 1.

The counter time base in baud rate generator mode is CLKOUT/2. To use an external clock
source, set C/T2 to 1 and apply the desired clock source to the T2 pin.

NG

The maximum frequency for an external clock source on the T2 pin is 3 MHz.

Chapter 14. Timers/Counters and Serial Interface Page 14-11

EZ-USB FX2 Technical Reference Manual

Divide
CLKOUT— by 2 0y c/T2 TIMER 1 OVERFLOW

CLK

1
Divide
T2 pin by 2
TR2 | SMODO
0

1
0 7 8 15 RCLK RX
| TL2 | TH2 | —»\ <« CLOCK
HEEIEEN RN 1] 0 Divide

A JAN o 10
[TTTTTT T TTTTITTT TCLK
[RCAP2L | RCAP2H | L 40—
0 78 15 1 | Divide

by 16

EXEN2 —l_ | T
CLOCK

_ 3—» EXF2 |—» TIMER 2 INTERRUPT
T2EX pin >———

Figure 14-6. Timer 2 - Baud Rate Generator Mode

14.3 Serial Interface

The FX2 provides two serial ports. Serial Port 0 operates almost exactly as a standard 8051 serial
port; depending on the configured mode (see Table 14-7), its baud-clock source can be CLKOUT/
4 or CLKOUT/12, Timer 1, Timer 2, or the High-Speed Baud Rate Generator (see Section 14.3.2).
Serial Port 1 is identical to Serial Port 0, except that it cannot use Timer 2 as its baud rate genera-
tor.

Each serial port can operate in synchronous or asynchronous mode. In synchronous mode, the
FX2 generates the serial clock and the serial port operates in half-duplex mode. In asynchronous
mode, the serial port operates in full-duplex mode. In all modes, the FX2 double-buffers the incom-
ing data so that a byte of incoming data can be received while firmware is reading the previously-
received byte.

Each serial port can operate in one of four modes, as outlined in Tabl e14-7.

Page 14-12 EZ-USB FX2 Technical Reference Manual v2.1

Table 14-7. Serial Port Modes

iul ESS

Timer 2 (Port 0 only), or

High-Speed Baud Rate Generator (Ports 0 and 1)

Sync / Data Start / 9th Bit
LB Async EEUROREK e Bits Stop Function
0 Sync |CLKOUT/4 or CLKOUT/12 8 None None
Async | Timer 1 (Ports 0 and 1), 8 1 start, 1 stop None
Timer 2 (Port 0 only), or
High-Speed Baud Rate Generator (Ports 0 and 1)
Async | CLKOUT/32 or CLKOUT/64 1 start, 1 stop | O, 1, or parity
Async | Timer 1 (Ports 0 and 1), 1 start, 1 stop | O, 1, or parity

Note: The High-Speed Baud Rate Generator provides 115.2K or 230.4K baud rates (see Section 14.3.2).

The registers associated with the serial ports are as follows. (Registers PCON and EICON also
include some functionality which is not part of the Serial Interface).

PCON (SFR 0x87) — Bit 7, Serial Port O rate control SMODO (Table 14-13).

SCONO (SFR 0x98) — Serial Port 0 control (Table 14-11).

SBUFO (SFR 0x99) — Serial Port 0 transmit/receive buffer.

EICON (SFR 0xD8) — Bit 7, Serial Port 1 rate control SMOD1 (Table 14-12).

SCONL1 (SFR 0xC0) — Serial Port 1 control (Table 14-14).

SBUF1 (SFR 0xC1) — Serial Port 1 transmit/receive buffer.

T2CON (SFR 0xC8) — Baud clock source for modes 1 and 3 (RCLK and TCLK in
Table 14-5).

UART230 (OXE608) — High-Speed Baud Rate Generator enable (see Section 14.3.2,
"High-Speed Baud Rate Generator").

14.3.1 803x/805x Compatibility

The implementation of the serial interface is similar to that of the Dallas Semiconductor,
DS80C320. Table 14-8 summarizes the differences in serial interface implementation between the
Intel 8051, the Dallas Semiconductor DS80C320, and the FX2.

Table 14-8. Serial Interface Implementation Comparison

multiprocessor communication

Feature Intel 8051 Dallas DS80C320 FX2
Number of serial ports 1 2 2
Framing error detection not implemented implemented not implemented
Slave address comparison for not implemented implemented not implemented

Chapter 14. Timers/Counters and Serial Interface

Page 14-13

EZ-USB FX2 Technical Reference Manual

14.3.2 High-Speed Baud Rate Generator

The FX2 incorporates a high-speed baud rate generator which can provide 115.2K and 230.4K
baud rates for either or both serial ports, regardless of the FX2's internal clock frequency (12, 24,
or 48 MHz).

The high-speed baud rate generator is enabled for Serial Port 0 by setting UART230.0 to 1; it's
enabled for Serial Port 1 by setting UART230.1 to 1.

When enabled, the high-speed baud rate generator defaults to 115.2K baud.To select 230.4K
baud for Serial Port 0, set SMODO (PCON.7) to 1; for Serial Port 1, set SMOD1 (EICON.7) to 1.

Table 14-9. UART230 Register — Address 0xE608

Bit Function

UART230.7:2 | Reserved

UART230.1 230UARTL1 - Enable high-speed baud rate generator for serial port 1. When 230UART1
=1, a 115.2K baud (if SMOD1 = 0) or 230.4K baud (if SMOD1 = 1) clock is provided to
serial port 1. When 230UART1 = 0, serial port 1's baud clock is provided by one of the

sources shown in Tabl e14-7.

UART230.0 | 230UARTO - Enable high-speed baud rate generator for serial port 0. When 230UARTO
=1, a 115.2K baud (if SMODO = 0) or 230.4K baud (if SMODO = 1) clock is provided to

serial port 0. When 230UARTL1 = 0, serial port 0’s baud clock is provided by one of the

sources shown in Tabl e14-7.

NG
When the High-Speed Baud Rate Generator is enabled for either serial port, neither port may use
Timer 1 as its baud-clock source. Therefore, the allowable combinations of baud-clock sources for

Modes 1 and 3 are:

Table 14-10. Allowable Baud-Clock Combinations for Modes 1 and 3

Port O Port 1
Timer 1 Timer 1
Timer 2 Timer 1
Timer 2 High-Speed Baud Rate Generator
High-Speed Baud Rate Generator | High-Speed Baud Rate Generator

Page 14-14 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

14.3.3 Mode O

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port 0, serial
data output occurs on the RXDOOUT pin, serial data is received on the RXDO pin, and the TXDO
pin provides the shift clock for both transmit and receive. For Serial Port 1, the corresponding pins
are RXD1OUT, RXD1, and TXD1.

The serial mode 0 baud rate is either CLKOUT/12 or CLKOUT/4, depending on the state of the
SM2_0 bit (or SM2_1 for Serial Port 1). When SM2_0 = 0, the baud rate is CLKOUT/12, when
SM2_0 =1, the baud rate is CLKOUT/4.

Mode 0 operation is identical to the standard 8051. Data transmission begins when an instruction
writes to the SBUFO (or SBUF1) SFR. The USART shifts the data, LSB first, at the selected baud
rate, until the 8-bit value has been shifted out.

Mode 0 data reception begins when the REN_0 (or REN_1) bit is set and the RI_0 (or RI_1) bit is
cleared in the corresponding SCON SFR. The shift clock is activated and the USART shifts data,
LSB first, in on each rising edge of the shift clock until 8 bits have been received. One CLKOUT
cycle after the 8th bit is shifted in, the RI_0 (or RI_1) bit is set and reception stops until the software
clears the RI bit.

Figure 14-7 through Figure 14-10 illustrate Serial Port Mode 0 transmit and receive timing for both
low-speed (CLKOUT/12) and high-speed (CLKOUT/4) operation. The figures show Port 0 signal
names, RXD0, RXDOOUT, and TXDO. The timing is the same for Port 1 signals RXD1, RXD1OUT,
and TXD1, respectively.

Chapter 14. Timers/Counters and Serial Interface Page 14-15

EZ-USB FX2 Technical Reference Manual

Table 14-11. SCONO Register — SFR 98h

Bit Function

SCONO.7 SMO_0 - Serial Port 0 mode bit 0.

SCONO0.6 SM1_0 - Serial Port 0 mode bit 1, decoded as:
SMO0 0 SM1 0 Mode

0 0 0

0 1 1
1 0 2
1 1 3

SCONO0.5 SM2_0 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the mul-
tiprocessor communication feature. If SM2_0 = 1 in mode 2 or 3, then RI_0 will not be acti-
vated if the received 9th bit is 0.

If SM2_0=1 in mode 1, then RI_O will only be activated if a valid stop is received. In mode
0, SM2_0 establishes the baud rate: when SM2_0=0, the baud rate is CLKOUT/12; when
SM2_0=1, the baud rate is CLKOUT/4.

SCONO0.4 REN_O - Receive enable. When REN_0=1, reception is enabled.

SCONO0.3 TB8_0 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCONO0.2 RB8_0 - In modes 2 and 3, RB8_0 indicates the state of the 9th bit received. In mode 1,
RB8_0 indicates the state of the received stop bit. In mode 0, RB8_0 is not used.

SCONO.1 T1_0 - Transmit interrupt flag. Indicates that the transmit data word has been shifted out. In
mode 0, TI_O is set at the end of the 8th data bit. In all other modes, TI_0 is set when the
stop bit is placed on the TXDO pin. TI_0 must be cleared by firmware.

SCONO0.0 RI_O - Receive interrupt flag. Indicates that serial data word has been received. In mode 0,
RI_0 is set at the end of the 8th data bit. In mode 1, RI_0 is set after the last sample of the
incoming stop bit, subject to the state of SM2_0. In modes 2 and 3, RI_O is set at the end of
the last sample of RB8_0. RI_0 must be cleared by firmware.

Table 14-12. EICON (SFR 0xD8) SMODL1 Bit

Bit Function

EICON.7 SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1 the baud rate for Serial
Port is doubled.

Table 14-13. PCON (SFR 0x87) SMODO Bit

Bit Function

PCON.7 SMODO - Serial Port 0 baud rate double enable. When SMODO = 1, the baud rate for Serial
Port 0 is doubled.

Page 14-16 EZ-USB FX2 Technical Reference Manual v2.1

igﬁ'?ltﬁ&iﬁ

Table 14-14. SCON1 Register — SFR COh

Bit Function
SCON1.7 | SMO_1 - Serial Port 1 mode bit 0.

SCON1.6 | SM1_1 - Serial Port 1 mode bit 1, decoded as:
SMO_1 SM1 1 Mode

0 0 0
0 1 1
1 0 2
1 1 3

SCON1.5 | SM2_1 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the
multiprocessor communication feature. If SM2_1 = 1 in mode 2 or 3, then RI_1 will not be
activated if the received 9th bit is 0.

If SM2_1=1 in mode 1, then RI_1 will only be activated if a valid stop is received. In mode
0, SM2_1 establishes the baud rate: when SM2_1=0, the baud rate is CLKOUT/12; when
SM2_1=1, the baud rate is CLKOUT/4.

SCON1.4 | REN_1 - Receive enable. When REN_1=1, reception is enabled.

SCON1.3 | TB8_1 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON1.2 | RB8_1-Inmodes 2 and 3, RB8_1 indicates the state of the 9th bit received. In mode 1,
RB8_1 indicates the state of the received stop bit. In mode 0, RB8_1 is not used.

SCON1.1 | TI_1- Transmitinterrupt flag. Indicates that the transmit data word has been shifted out. In
mode 0, TI_1 is set at the end of the 8th data bit. In all other modes, TI_1 is set when the
stop bitis placed on the TXD1 pin. TI_1 must be cleared by the software.

SCON1.0 | RI_1-Receive interrupt flag. Indicates that serial data word has been received. In mode 0,
RI_1 is set at the end of the 8th data bit. In mode 1, RI_1 is set after the last sample of the
incoming stop bit, subject to the state of SM2_1. In modes 2 and 3, RI_1 is set at the end
of the last sample of RB8_1. RI_1 must be cleared by the software.

Chapter 14. Timers/Counters and Serial Interface Page 14-17

EZ-USB FX2 Technical Reference Manual

CLKOUT
rRxpo X DOXT DX OO DO e OO T oK

RXDOOUT
xpo I fr I Jrrfref-—r

T
RI [

Figure 14-7. Serial Port Mode 0 Receive Timing - Low Speed Operation

crkout JUUTU UL U U UL U U Uy U g L
RXDO __ XOX T XOX T X T OEX T O T X T X T XK

RXDOOUT

TXDO L 0 7 L L I LI L1
T

RI

Figure 14-8. Serial Port Mode 0 Receive Timing - High Speed Operation

NG
At both low and high speed in Mode 0, data on RXDO0 is sampled two CLKOUT cycles before the
rising clock edge on TXDO.

Page 14-18 EZ-USB FX2 Technical Reference Manual v2.1

igﬁ'?ltﬁ&iﬁ

CLKOUT

RXDO
RXDOOUT X Do X b1 X D2 X D3 X D4 X D5 X D6 X D7 X
Txoo L[I fJr.J- e frr— "
T

RI

Figure 14-9. Serial Port Mode 0 Transmit Timing - Low Speed Operation

cueout [JTUTHTTUUTUTIUUUT TV Uiy urin

RXDO
RXDOOUT X_ D0 X b1 X D2 X D3 X b4 X D5 X_ D6 X D7 X

oo | |1 I 7 I I [[]

TI

RI

Figure 14-10. Serial Port Mode 0 Transmit Timing - High Speed Operation

Chapter 14. Timers/Counters and Serial Interface Page 14-19

EZ-USB FX2 Technical Reference Manual

14.3.4 Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, using a total of 10 bits: 1
start bit, 8 data bits, and 1 stop bit. For receive operations, the stop bit is stored in RB8_0 (or
RB8_1). Data bits are received and transmitted LSB first.

Mode 1 operation is identical to that of the standard 8051 when Timer 1 uses CLKOUT/12,
(T1M=0, the default).

14.3.4.1 Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port O can use either Timer 1 or Timer
2 to generate baud rates. Serial Port 1 can only use Timer 1. The two serial ports can run at the
same baud rate if they both use Timer 1, or different baud rates if Serial Port 0 uses Timer 2 and
Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (OXFF for Timer 1 or OxFFFF for Timer 2),
a clock is sent to the baud rate circuit. That clock is then divided by 16 to generate the baud rate.

When using Timer 1, the SMODO (or SMOD1) Bit selects whether or not to divide the Timer 1 roll-
over rate by 2. Therefore, when using Timer 1, the baud rate is determined by the equation:

SMODx

Baud Rate = x Timer 1 Overflow

32

When using Timer 2, the baud rate is determined by the equation:

Timer 2 Overflow
16

Baud Rate =

To use Timer 1 as the baud rate generator, it is generally best to use Timer 1 mode 2 (8-bit counter
with auto-reload), although any counter mode can be used. In mode 2, the Timer 1 reload value is
stored in the TH1 register, which makes the complete formula for Timer 1:

SMODx CLKOUT
X

32 (12 - 8 x TIM) x (256 - TH1)

Baud Rate =

To derive the required TH1 value from a known baud rate when T1M=0, use the equation:

SMODx
2 x CLKOUT

384 x Baud Rate

TH1= 256-

Page 14-20 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

To derive the required TH1 value from a known baud rate when T1M=1, use the equation:

SMODx
2 X CLKOUT

128 x Baud Rate

TH1= 256-

NG
Very low serial port baud rates may be achieved with Timer 1 by enabling the Timer 1 interrupt,
configuring Timer 1 to mode 1, and using the Timer 1 interrupt to initiate a 16-bit software reload.

Table 14-15 lists sample reload values for a variety of common serial port baud rates, using Timer
1 operating in mode 2 (TMOD.5:4=10) with a CLKOUT/4 clock source (T1M=1) and the full timer
rollover (SMOD1=1).

Table 14-15. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates

CLKOUT =12 MHz CLKOUT = 24 MHz CLKOUT =48 MHz
Nominal
Rate Rllt)izd Actual 1o RZIHo;d Actual 1o RZIHo%id Acual 1o
Value Rate Value Rate Value Rate
57600 FD 62500 | +8.50% F9 53571 | -6.99% F3 57692 | +0.16%
38400 FB 37500 | -2.34% F6 37500 | -2.34% EC 37500 | -2.34%
28800 F9 26786 | -6.99% F3 28846 | +0.16% E6 28846 | +0.16%
19200 F6 18750 | -2.34% EC 18750 | -2.34% D9 19230 | +0.16%
9600 EC 9375 -2.34% D9 9615 +0.16% B2 9615 +0.16%
4800 D9 4807 +0.16% B2 4807 +0.16% 64 4807 +0.16%
2400 B2 2403 +0.16% 64 2403 +0.16% — — —
Settings: SMOD=1, C/T=0, Timerl Mode=2, TIM=1
Note: Using rates that are off by 2% or more will not work in all systems.

More accurate baud rates may be achieved by using Timer 2 as the baud rate generator. To use
Timer 2 as the baud rate generator, configure Timer 2 in auto-reload mode and set the TCLK and/
or RCLK bits in the T2CON SFR. TCLK selects Timer 2 as the baud rate generator for the trans-
mitter; RCLK selects Timer 2 as the baud rate generator for the receiver. The 16-bit reload value
for Timer 2 is stored in the RCAP2L and RCA2H SFRs, which makes the equation for the Timer 2
baud rate:

CLKOUT
32 x (65536 - 256xRCAP2H + RCAP2L)

Baud Rate =

Chapter 14. Timers/Counters and Serial Interface Page 14-21

EZ-USB FX2 Technical Reference Manual

To derive the required RCAP2H and RCAP2L values from a known baud rate, use the equation:

CLKOUT
32 x Baud Rate

RCAP2H:L = 65536 -

When either RCLK or TCLK is set, the TF2 flag is not set on a Timer 2 rollover and the T2EX
reload trigger is disabled.

Table 14-16 lists sample RCAP2H:L reload values for a variety of common serial baud rates.

Table 14-16. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates

CLKOUT =12 MHz CLKOUT =24 MHz CLKOUT =48 MHz
Nominal Rate JRCAP2H:L Actual RCAP2H:L Actual RCAP2H:L Actual
Reload Error Reload Error Reload Error
Rate Rate Rate
Value Value Value
57600 FFF9 53571 | -6.99% FFF3 57692 | +0.16% FFE6 57692 | +0.16%
38400 FFF6 37500 | -2.34% FFEC 37500 |-2.34% FFD9 38461 | +0.16%
28800 FFF3 28846 | +0.16% FFE6 28846 | +0.16% FFCC 28846 | +0.16%
19200 FFEC 18750 | -2.34% FFD9 19230 | +0.16% FFB2 19230 | +0.16%
9600 FFD9 9615 |+0.16% FFB2 9615 |+0.16% FF64 9615 |+0.16%
4800 FFB2 4807 |+0.16% FF64 4807 |+0.16% FECS8 4807 |+0.16%
2400 FF64 2403 |+0.16% FECS8 2403 |+0.16% FD90 2403 |+0.16%

Note: using rates that are off by 2.3% or more will not work in all systems.

14.3.4.2 Mode 1 Transmit

Figure 14-11 illustrates the mode 1 transmit timing. In mode 1, the USART begins transmitting
after the first rollover of the divide-by-16 counter after the software writes to the SBUFO (or
SBUF1) register. The USART transmits data on the TXDO (or TXD1) pin in the following order:
start bit, 8 data bits (LSB first), stop bit. The TI1_0 (or TI_1) bit is set 2 CLKOUT cycles after the
stop bit is transmitted.

14.3.5 Mode 1 Receive

Figure 14-12 illustrates the mode 1 receive timing. Reception begins at the falling edge of a start
bit received on the RXDO (or RXD1) pin, when enabled by the REN_0 (or REN_1) Bit. For this pur-
pose, the RXDO (or RXD1) pin is sampled 16 times per bit for any baud rate. When a falling edge

Page 14-22 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

of a start bit is detected, the divide-by-16 counter used to generate the receive clock is reset to
align the counter rollover to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority deci-

sion of 3 consecutive samples in the middle of each bit time. For the start bit, if the falling edge on
the RXDO (or RXD1) pin is not verified by a majority decision of 3 consecutive samples (low), then
the serial port stops reception and waits for another falling edge on the RXDO (or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:
* RIO(orRI_1)=0

e If SM2_0 (or SM2_1) = 1, the state of the stop bitis 1
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.

If the above conditions are met, the serial port then writes the received byte to the SBUFO (or
SBUF1) Register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) Bit. If the
above conditions are not met, the received data is lost, the SBUF Register and RB8 Bit are not
loaded, and the RI Bit is not set.

After the middle of the stop bit time, the serial port waits for another high-to-low transition on the
(RXDO or RXD1) pin.

Write to
SBUFO I

TX CLK [| | | |] | |
SHIFT 1 | I [— |]]

TXDO START/ D0 X D1 X D2 X D3 X D4 X D5 D6 X D7 STOP

RXDO

RXDOOUT

TILO
RI_O

Figure 14-11. Serial Port 0 Mode 1 Transmit Timing

Chapter 14. Timers/Counters and Serial Interface Page 14-23

EZ-USB FX2 Technical Reference Manual

RX CLK | | | I | | | IO | N |

~ RxDO \STAR} o X b1 X D2 X D3 X D4 X D5 X D6 X D7 / STOP
e, TR A MM R R A
i T I I I

RXDOOUT
TXDO

TILO

RIO [

Figure 14-12. Serial Port 0 Mode 1 Receive Timing

14.3.6 Mode 2

Mode 2 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8
data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and received LSB
first. For transmission, the 9th bit is determined by the value in TB8 0 (or TB8_1). To use the 9th
bit as a parity bit, move the value of the P bit (SFR PSW.0) to TB8 0 (or TB8_1).

The Mode 2 baud rate is either CLKOUT/32 or CLKOUT/64, as determined by the SMODO (or
SMOD1) bit. The formula for the mode 2 baud rate is:

SMODx
2 x CLKOUT

64

Baud Rate =

Mode 2 operation is identical to the standard 8051.

14.3.6.1 Mode 2 Transmit

Figure 14-13 illustrates the mode 2 transmit timing. Transmission begins after the first rollover of
the divide-by-16 counter following a software write to SBUFO (or SBUF1). The USART shifts data
out on the TXDO (or TXD1) pin in the following order: start bit, data bits (LSB first), 9th bit, stop bit.
The T1_0 (or TI_1) Bit is set when the stop bit is placed on the TXDO (or TXD1) pin.

Page 14-24 EZ-USB FX2 Technical Reference Manual v2.1

i&'n'::-l'-:r-:e_:s
14.3.6.2 Mode 2 Receive

Figure 14-14 illustrates the mode 2 receive timing. Reception begins at the falling edge of a start
bit received on the RXDO (or RXD1) pin, when enabled by the REN_0 (or REN_1) Bit. For this pur-
pose, the RXDO (or RXD1) pin is sampled 16 times per bit for any baud rate. When a falling edge
of a start bit is detected, the divide-by-16 counter used to generate the receive clock is reset to
align the counter rollover to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority deci-
sion of 3 consecutive samples in the middle of each bit time. For the start bit, if the falling edge on
the RXDO (or RXD1) pin is not verified by a majority decision of 3 consecutive samples (low), then
the serial port stops reception and waits for another falling edge on the RXDO (or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:
* RIO(orRI_1)=0

e IfSM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received byte to the SBUFO (or
SBUF1) Register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) Bit. If the
above conditions are not met, the received data is lost, the SBUF Register and RB8 Bit are not
loaded, and the RI Bit is not set. After the middle of the stop bit time, the serial port waits for
another high-to-low transition on the RXDO0 (or RXD1) pin.

Write to
SBUFO H

TX CLK S | N | A | | N | N ||
SHIFT .t 1T " 1+ @ @® [1

TXDO STARY oo X D1 X D2 X D3 X D4 X D5 X D6 X D7 X TB8 /STOP

RXDO
RXDOOUT

TILO

RI_O

Figure 14-13. Serial Port 0 Mode 2 Transmit Timing

Chapter 14. Timers/Counters and Serial Interface Page 14-25

EZ-USB FX2 Technical Reference Manual

o @1 1 T I]

RXDO STARY Do X b1 X D2 X D3 X D4 X D5 X D6 X D7 X RB8,/STOP
Bit detector 1l Il 1/ I Il |- -1l

samelng oo T

SHIFT
RXDOOUT

TXDO
TILO

RI_O

Figure 14-14. Serial Port 0 Mode 2 Receive Timing

14.3.7 Mode 3

Mode 3 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8
data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and received LSB
first.

The mode 3 transmit and operations are identical to mode 2. The mode 3 baud rate generation is
identical to mode 1. That is, mode 3 is a combination of mode 2 protocol and mode 1 baud rate.
Figure 14-15 illustrates the mode 3 transmit timing. Figure 14-16 illustrates the mode 3 receive
timing.

Mode 3 operation is identical to that of the standard 8051 when Timer 1 uses CLKOUT/12,
(T1M=0, the default).

Page 14-26 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Write to
SBUFO H

TX CLK . r ®t 7T @& 4 1®T ‘;° ;[17
SHIFT ot 1 [@& [\ 1

TXDO STARY po X D1 X D2 D3 X D4 X D5 X D6 X D7 X TB8 /SsToP

RXDO
RXDOOUT

TILO

RI_O

Figure 14-15. Serial Port 0 Mode 3 Transmit Timing

exeek —— 0 0 q e e

RXDO NTARY/ Do X D1 XD2 X D3 X D4 X D5 X D6 X D7 X RB8/STOP
Bit detector W M 1| 1 | |

sampling

g RN I

RXDOOUT
TXDO
TILO

RIO |

Figure 14-16. Serial Port 0 Mode 3 Receive Timing

Chapter 14. Timers/Counters and Serial Interface Page 14-27

EZ-USB FX2 Technical Reference Manual

Page 14-28 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 15 Registers

15.1 Introduction

This section describes the EZ-USB FX2 registers in the order they appear in the EZ-USB FX2
memory map, see Figure 5-4. The registers are named according to the following conventions.

Most registers deal with endpoints. The general register format is DDDnFFF, where:
DDD is endpoint direction, IN or OUT with respect to the USB host.
n is the endpoint number, where:
e “ISO” indicates isochronous endpoints as a group.
FFF s the function, where:
» CS s a control and status register
* IRQ is an Interrupt Request bit

e |Eis an Interrupt Enable bit

* BC, BCL, and BCH are byte count registers. BC is used for single byte counts, and
BCH/BCL are used as the high and low bytes of 16-bit byte counts.

« DATA is a single-register access to a FIFO.

 BUF is the start address of a buffer.

15.1.1 Example Register Formats

» EPI1INBC is the Endpoint 1 IN byte count.

Chapter 15. Registers Page 15-1

EZ-USB FX2 Technical Reference Manual

15.1.2 Other Conventions

USB Indicates a global (not endpoint-specific) USB function.
ADDR Is an address.

VAL Means valid.

FRAME Is a frame count.

PTR Is an address pointer.

Register Name Register Function Address
b7 b6 b5 b4 b3 b2 bl b0
bitname bitname bitname bitname bitname bitname bitname bitname
R, W access | R, W access | R, W access | R, W access | R, W access | R, W access | R, W access | R, W access
Default val Default val Default val Default val Default val Default val Default val Default val

Figure 15-1 illustrates the register description format used in this chapter.

Figure 15-1. Register Description Format

* The top line shows the register name, functional description, and address in the EZ-USB
FX2 memory.

e The second line shows the bit position in the register.

e The third line shows the name of each bit in the register.

» The fourth line shows CPU accessibility: R(ead), W(rite), or R/W.

» The fifth line shows the default value. These values apply after a Power-On-Reset (POR).

Page 15-2

EZ-USB FX2 Technical Reference Manual v2.1

;Eﬁpnrﬁ-s

15.2 Special Function Registers (SFR)

FX2 implements many control registers as SFRs (Special Function Registers). These SFRs are
shown in Table 15-1. Bold type indicates SFRs which are not in the standard 8051, but are
included in the FX2.

Table 15-1. FX2 Special Function Registers (SFR)

X 8x 9x AX Bx (09'¢ Dx Ex Fx
0 I0A 10B 10C 10D SCON1 PSW ACC B
1 SP EXIF INT2CLR IOE SBUF1
2 DPLO MPAGE INTACLR OEA
3 DPHO OEB
4 DPL1 OEC
5 DPH1 OED
6 DPS OEE
7 PCON
8 TCON SCONO IE IP T2CON | EICON EIE EIP
9 TMOD SBUFO
A TLO AUTOPTRH1 EP2468STAT EPO1STAT RCAP2L
B TL1 AUTOPTRL1 | EP24FIFOFLGS GPIFTRIG RCAP2H
C THO EP68FIFOFLGS TL2
D TH1 AUTOPTRH2 GPIFSGL- TH2
DATH
E CKCON AUTOPTRL2 GPIFSGL-
DATLX

F AUTOPTR- GPIFSGL-

SETUP DATLNOX

N\

All unlabeled SFRs are reserved.

Chapter 15. Registers

Page 15-3

EZ-USB FX2 Technical Reference Manual

15.3 About SFRS

Because the SFRs are directly-addressable internal registers, firmware can access them quickly,
without the overhead of loading the data pointer and performing a MOVX instruction. For example,
the firmware reads the FX2 Port B pins using a single instruction, as shown in Figure 15-2.

a, | OB

Figure 15-2. Single Instruction to Read Port B

Similarly, firmware writes the value 0x55 to Port C using only one MOV instruction, as shown in

Figure 15-3.

nov

I OC, #55h

Figure 15-3. Single Instruction to Write to Port C

SFRs in Table 15-1 rows 0 and 8 are bit-addressable; individual bits of the registers may be effi-
ciently set, cleared, or toggled using special bit-addressing instructions (e.g., setb 10B.2 sets bit 2
of the IOB register).

I0OA Port A (bit addressable) SFR 0x80
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Page 15-4

EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

I0OB Port B (bit addressable) SFR 0x90
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTOPTRH1 Autopointer 1 Address HIGH SFR O0x9A
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 Al3 Al2 All A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
AUTOPTRL1 Autopointer 1 Address LOW SFR 0x9B
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
AUTOPTRH2 Autopointer 2 Address HIGH SFR 0x9D
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 Al12 All A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Chapter 15. Registers Page 15-5

EZ-USB FX2 Technical Reference Manual

AUTOPTRL2 Autopointer 2 Address LOW SFR Ox9E
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
I0C Port C (bit addressable) SFR O0xAO0
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
INT2CLR Interrupt 2 Clear SFR OxAl
b7 b6 b5 b4 b3 b2 bl b0
X X X X X X X X
W W W W W W W W
X X X X X X X X
INTACLR Interrupt 4 Clear SFR O0xA2
b7 b6 b5 b4 b3 b2 bl b0
X X X X X X X X
W W W W W W W W
X X X X X X X X

Writing any value to INT2CLR or INT4CLR clears the INT2 or INT4 interrupt request bit for the
INT2/INT4 interrupt currently being serviced.

NG
Writing to one of these registers has the same effect as clearing the appropriate interrupt request
bit in the FX2 external register space. For example, suppose the EP2 Empty Flag interrupt is

asserted. The FX2 automatically sets bit 1 of the EP2FIFOIRQ register (in External Data memory
space, at 0XE651), and asserts the INT4 interrupt request.

Using autovectoring, the FX2 automatically calls (vectors to) the EP2_FIFO_EMPTY 2 Interrupt
Service Routine (ISR). The first task in the ISR is to clear the interrupt request bit, EP2FIFOIRQ.1.

Page 15-6 EZ-USB FX2 Technical Reference Manual v2.1

method is much faster and does not require saving the data pointer, so it is preferred.

ié‘ﬂr-n ESS

The firmware can do this either by accessing the EP2FIFOIRQ register (at 0XE651) and writing a 1
to bit 1, or simply by writing any value to INTACLR. The first method requires the use of the data
pointer, which must be saved and restored along with the accumulator in an ISR. The second

EP2468STAT Endpoint(s) 2,4,6,8 Status Flags SFR OxAA
b7 b6 b5 b4 b3 b2 bl b0
EP8F EPSE EPG6F EPGE EP4F EP4E EP2F EP2E
R R R R R R R R
0 1 0 1 1 0 1 0

The bits in EP2468STAT correspond to Endpoint Status bits in the FX2 register file, as follows:

NG

Table 15-2. SFR and FX2 Register File Correspondences

Bit | EPSTATSFR | FX2 Register.Bit ||::>|(|§ Ejgig
7 EP8 Full flag EP8CS.3 E6A6

6 EP8 Empty flag EP8CS.2 E6A6

5 EP6 Full flag EP6CS.3 E6A5

4 EP6 Empty flag EP6CS.2 E6A5

3 EP4 Full flag EP4CS.3 E6A4

2 EP4 Empty flag EP4CS.2 E6A4

1 EP2 Full flag EP2CS.3 E6A3

0 EP2 Empty flag EP2CS.2 E6A3

The Endpoint status bits represent the Packet Status.

Chapter 15. Registers

Page 15-7

EZ-USB FX2 Technical Reference Manual

EP24FIFOFLGS Endpoint(s) 2, 4 Slave FIFO SFR OxAB
Status Flags
b7 b6 b5 b4 b3 b2 bl b0
0 EP4PF EP4EF EP4FF 0 EP2PF EP2EF EP2FF
R R R R R R R R
0 0 1 0 0 0 1 0
EP68FIFOFLGS Endpoint(s) 6, 8 Slave FIFO SFR OxAC
Status Flags
b7 b6 b5 b4 b3 b2 bl b0
0 EP8PF EPBSEF EP8FF 0 EP6PF EPGEF EP6FF
R R R R R R R R
0 1 1 0 0 1 1 0
AUTOPTRSETUP Autopointer(s) 1 & 2 Setup SFR OxAF
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 APTR2INC APTR1INC APTREN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 1 0

FX2 provides two identical autopointers. They are similar to the internal “DPTR” data pointers, but
with an additional feature: each can automatically increment after every memory access. Using
one or both of the autopointers, FX2 firmware can perform very fast block memory transfers.

The AUTOPTRSETUP register is configured as follows:

Set APTRnINC=0 to freeze the address pointer, APTRNINC=1 to automatically increment
it for every read or write of an XAUTODATN register. This bit defaults to 1, enabling the
auto-increment feature.

To enable the autopointer, set APTREN=1. Enabling the Autopointers has one side-effect:
Any code access (an instruction fetch, for instance) from addresses OXE67B and OxE67C
will return the AUTODATA values, rather than the code-memory values at these two

addresses. This introduces a two-byte “hole” in the code memory.

The firmware then writes a 16-bit address to AUTOPTRHnN/Ln. Then, for every read or write of an

XAUTODATN register, the address pointer automatically increments (if APTRnINC=1).

Page 15-8

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

IOD Port D (bit addressable) SFR 0xBO
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

FX2 1/0O ports PORTA-PORTD appear as bit-addressable SFRS. Reading a register or bit returns
the logic level of the port pin that's two CLKOUT-clocks old. Writing a register bit writes the port
latch. Whether or not the port latch value appears on the I/O pin depends on the state of the pin’s
OE (Output Enable) bit. The I/O pins may also be assigned alternate function values, in which case
the 10x and OEXx bit values are overridden on a bit-by-bit basis.

IOD is bit-addressable; see Figure 15-4.

setb 1 OD. 2 ; set bit 2 of 10D SFR

Figure 15-4. Use Bit 2 to set PORTD - Single Instruction

IOE Port E SFR 0xB1
b7 b6 b5 b4 b3 b2 bl bo
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X

IO port PORTE is also accessed using an SFR, but unlike the PORTA-PORTD SFRs, it is not bit-
addressable; see Figure 15-5.

mv a, | Ce
or a, #00001000b ; set bit 3
mv I CE, a

Figure 15-5. Use OR to Set Bit 3

Chapter 15. Registers Page 15-9

EZ-USB FX2 Technical Reference Manual

OEA Port A Output Enable SFR 0xB2
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEB Port B Output Enable SFR 0xB3
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEC Port C Output Enable SFR 0xB4
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Page 15-10

EZ-USB FX2 Technical Reference Manual v2.1

%E.‘T!-'!'-‘I'.‘ES

OED Port D Output Enable SFR 0xB5
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OEE Port E Output Enable SFR 0xB6
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

The bits in OEA - OEE turn on the output buffers for the five 10 Ports PORTA-PORTE. Setting a bit

to 1 turns on the output buffer, setting it to O turns the buffer off.

EPO1STAT Endpoint 0 and 1 Status SFR OxBA
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 EP1INBSY | EP1OUTBSY | EPOBSY
R R R R R R R R
0 0 0 0 0 0 0 0
GPIFTRIG Endpoint 2,4,6,8 GPIF Slave SFR 0OxBB
see Section 15.14 FIFO Trigger
b7 b6 b5 b4 b3 b2 bl b0
DONE 0 0 0 0 R/W EP1 EPO
R/W R R R R R/W R/W R/W
1 0 0 0 0 X X X

Chapter 15. Registers

Page 15-11

EZ-USB FX2 Technical Reference Manual

GPIFSGLDATH GPIF Data HIGH (16-bit mode only) SFR 0xBD
b7 b6 b5 b4 b3 b2 b1l b0
D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
GPIFSGLDATLX GPIF Data LOW w/Trigger SFR OxBE
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
GPIFSGLDATLNOX GPIF Data LOW w/No SFR OxBF
Trigger
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
X X X X

Most of these SFR registers are also accessible in external RAM space, at the addresses shown

in Table 15-3.

Table 15-3. SFR Registers and External Ram Equivalent

SFR Register Name Hex External Ram Register Address and Name
EP2468STAT AA E6A3-E6A6 EPXCS
EP24FIFOFLGS AB EGAT7-EGAA EPXFIFOFLGS
EP68FIFOFLGS AC
EPO1STAT BA E6AO0-E6A2 EPOCS, EP10OUTCS, EP1INCS
GPIFTRIG BB E6D4, E6DC, E6E4, EGEC EPXGPIFTRIG
GPIFSGLDATH BD E6FO0 XGPIFSGLDATH
GPIFSGLDATLX BE E6F1 XGPIFSGLDATLX
GPIFSGLDATLNOX BF E6F2 XGPIFSGLDATLNOX

Page 15-12

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

15.4 GPIF Waveform Memories

15.4.1 GPIF Waveform Descriptor Data

WAVEDATA GPIF Waveform Descriptor 0, 1, 2, 3 E400-E47F*
Data
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

*Accessible only when IFCFG1:0 = 10.

Figure 15-6. GPIF Waveform Descriptor Data

The four GPIF waveform descriptor tables are stored in this space. See Chapter 10 "General Pro-
grammable Interface (GPIF)" for detalils.

15.5 General Configuration Registers

15.5.1 CPU Control and Status

CPUCS CPU Control and Status E600
b7 b6 b5 b4 b3 b2 b1 b0
0 0 PORTCSTB| CLKSPD1 | CLKSPDO | CLKINV CLKOE 0
RIW RIW RIW RIW RIW
0 0 0 0 0 0 1 0
Figure 15-7. CPU Control and Status
Bit 5 PORTCSTB PORTC access generates RD and WR strobes

The 100- and 128-pin FX2 packages have two output pins, RD and WR, that can be used to
synchronize data transfers on I/O PORTC. When PORTCSTB=1, this feature is enabled. Any
read of PORTC activates a RD strobe, and any write to PORTC activates a WR strobe.

Chapter 15. Registers Page 15-13

EZ-USB FX2 Technical Reference Manual

The RD and WR strobes are asserted for two CLKOUT cycles; the WR strobe asserts two
CLKOUT cycles after the PORTC pins are updated.

If a design uses the 128-pin FX2 and connects off-chip memory to the address and data
buses, this bit should be set to zero. This is because the RD and WR pins are also the stan-
dard strobes used to read and write off-chip memory, so normal reads/writes to 1/O Port C
would disrupt normal accesses to that memory.

CPU Clock Speed

Bit 4-3 CLKSPD1:0

Table 15-4. CPU Clock Speeds

CLKSPD1 | CLKSPDO CPU Clock
0 0 12 MHz (Default)
0 1 24 MHz
1 0 48 MHz
1 1 Reserved

These bits set the CPU clock speed. At power-on-reset, these bits default to 00 (12 MHz).
Firmware may modify these bits at any time.

Bit 2 CLKINV Invert CLKOUT Signal
CLKINV=0: CLKOUT signal not inverted (as shown in all timing diagrams).

CLKINV=1: CLKOUT signal inverted.

Bit 1 CLKOE Drive CLKOUT Pin

CLKOE=1: CLKOUT pin driven.

CLKOE=0: CLKOUT pin floats.

15.5.2 Interface Configuration (Ports, GPIF, slave FIFOs)

IFCONFIG Interface Configuration(Ports, GPIF, E601
slave FIFOs)
b7 b6 b5 b4 b3 b2 bl b0
IFCLKSRC | 3048MHZ | IFCLKOE | IFCLKPOL | ASYNC | GSTATE | IFCFG1 IFCFGO
R/W R/W R/W R/W R/W R/W R/W R/W
1 1 0 0 0 0 0 0

Page 15-14

Figure 15-8. Interface Configuration (Ports, GPIF, slave FIFOs)

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Bit 7 IFCLKSRC FIFO/GPIF Clock Source

This bit selects the clock source for both the FIFOS and GPIF. If IFCLKSRC=0, the external
clock on the IFCLK pin is selected. If IFCLKSRC=1 (default), an internal 30- or 48-MHz
(default) clock is used.

Bit 6 3048MHZ Internal FIFO/GPIF Clock Frequency

Table 15-5. Internal FIFO/GPIF Clock Frequency

3048MHZ FIFO & GPIF Clock
0 30 MHz
1 48 MHz(default)

This bit selects the internal FIFO & GPIF clock frequency.

Bit 5 IFCLKOE IFCLK pin output enable
O0=Tri-state
1=Drive

Bit 4 IFCLKPOL Invert the IFCLK signal

This bit indicates that the IFCLK signal is inverted.
When IFCLKPOL=0, the clock has the polarity shown in all the timing diagrams in this manual.
When IFCLKPOL=1, the clock is inverted.

IFCFG.6
IFCFG.4 IFCFG.5

30 MHz —T5 ¢ #
48 MHz — 1 0
%U |

IFCLK
IFCFG.7 Pin
IFCFG.4
Internal 1
IFCLK <—7 = 0 <]
Signal 1< '7
Figure 15-9. IFCLK Configuration
Page 15-15

Chapter 15. Registers

EZ-USB FX2 Technical Reference Manual

Bit 3 ASYNC FIFO/GPIF Asynchronous Mode

When ASYNC=0, the FIFO/GPIF operate synchronously: a clock is supplied either internally
or externally on the IFCLK pin; the FIFO control signals function as read and write enable sig-
nals for the clock signal.

When ASYNC=1, the FIFO/GPIF operate asynchronously: no clock signal input to IFCLK is
required; the FIFO control signals function directly as read and write strobes.

Bit 2 GSTATE Drive GSTATE [2:0] on PORTE [2:0]

When GSTATE=1, three bits in Port E take on the signals shown in Table 15-6. The GSTATE
bits, which indicate GPIF states, are used for diagnostic purposes.

Table 15-6. Port E Alternate Functions When GSTATE=1

10 Pin Alternate Function
PEO GSTATE[0]
PE1 GSTATE[1]
PE2 GSTATE[2]
Bit 1-0 IFCFG1:0 Select Interface Mode (Ports, GPIF, or Slave FIFO)

Table 15-7. Ports, GPIF, Slave FIFO Select

IFCFG1 | IFCFGO Configuration
0 0 Ports
0 1 Reserved
1 0 GPIF Interface (internal
master)
1 1 Slave FIFO Interface
(external master)

These bits control the following FX2 interface signals, as shown in Tabl e15-8.

Page 15-16 EZ-USB FX2 Technical Reference Manual v2.1

Chapter 15. Registers

Table 15-8. IFCFG Selection of Port I/0O Pin Functions

IFCFG1:0 =00 |IFCFG1:0 =10 |IFCFG1:0 =11
(Ports) (GPIF Master) | (Slave FIFO)
PD7 FD[15] FD[15]

PD6 FD[14] FD[14]

PD5 FD[13] FD[13]

PD4 FD[12] FD[12]

PD3 FD[11] FD[11]

PD2 FD[10] FD[10]

PD1 FD[9] FD[9]

PDO FD[8] FD[8]

PB7 FD[7] FD[7]

PB6 FD[6] FD[6]

PB5 FD[5] FD[5]

PB4 FD[4] FD[4]

PB3 FD[3] FD[3]

PB2 FD[2] FD[2]

PB1 FD[1] FD[1]

PBO FD[0] FD[0]

INTO / PAO INTO / PAO INTO / PAO
INT1/PA1L INT1/PA1 INTL/PA1
PA2 PA2 SLOE

WU2 / PA3 WU2 / PA3 WU2 / PA3

PA4 PA4 FIFOADRO
PA5 PA5 FIFOADR1
PA6 PA6 PKTEND

PA7 PA7 PA7 / FLAGD / SLCS
PC7:0 PC7:0 PC7:0

PE7:0 PE7:0 PE7:0

Note: Signals shown in bold type do not change with IFCFG;

they are shown for completeness.

; CYPRESS

Page 15-17

EZ-USB FX2 Technical Reference Manual

15.5.3 Slave FIFO FLAGA-FLAGD Pin Configuration

PINFLAGSAB Slave FIFO FLAGA and FLAGB Pin E602
see Section 15.14 Configuration
b7 b6 b5 b4 b3 b2 b1 b0
FLAGB3 FLAGB2 FLAGB1 FLAGBO FLAGAS FLAGA?2 FLAGA1l FLAGAO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
PINFLAGSCD Slave FIFO FLAGC and FLAGD Pin E603
see Section 15.14 Configuration
b7 b6 b5 b4 b3 b2 b1l b0
FLAGD3 FLAGD2 FLAGD1 FLAGDO FLAGC3 FLAGC2 FLAGC1 FLAGCO
RIW RIW RIW RIW RIW RIW RIW RIW
0 1 0 0 0 0 0 0

Figure 15-10. Slave FIFO FLAGA-FLAGD Pin Configuration

FX2 has four FIFO flag output pins, FLAGA, FLAGB, FLAGC and FLAGD. These flags can be pro-
grammed to represent various FIFO flags using four select bits for each FIFO. The PINFLAGSAB
register controls the FLAGA and FLAGB signals, and the PINFLAGSCD register controls the

FLAGC and FLAGD signal. The 4-bit coding for all four flags is the same, as shown in Table 15-9.

In the “FLAGX" notation, “x” can be A, B, C or D.

Page 15-18

EZ-USB FX2 Technical Reference Manual v2.1

igﬂ*ltﬁﬂﬁ

Table 15-9. FIFO Flag Pin Functions

FLAGx3 | FLAGx2 | FLAGx1 | FLAGxO Pin Function

FLAGA=PF, FLAGB=FF, FLAGC=EF,
0 0 0 0 FLAGD=EP2PF (Actual FIFO is selected
by FIFOADR[0,1] pins)

Reserved

EP2 PF
EP4 PF
EP6 PF
EP8 PF
EP2 EF
EP4EF
EP6 EF
EPS EF
EP2 FF
EP4 FF
EP6 FF
EP8 FF

PRI PIFP PP PIOIOCIOCIOIOlIOlO
PP P OIOIOIO|IRFR|IFPIFPI P OIOO
P OO FPIO|IO|RFR|IFPI O|O|F|FO

Rlo|lk|lo|lr|olr|lo|r|lo|lkr|lolr|l olr

1 1 1
NOTE: FLAGD defaults to EP2PF (fixed flag).

For the default (0000) selection, the four FIFO flags are indexed as shown in the first table entry.
The input pins FIFOADR1 and FIFOADRO select to which of the four FIFOs the flags correspond.
These pins are decoded as follows:

Table 15-10. FIFOADR1 FIFOADRO Pin Correspondence

FIFOADR1 pin FIFOADRO pin Selected FIFO
0 0 EP2
0 1 EP4
1 0 EP6
1 1 EPS8

For example, if FLAGA[3:0]=0000 and the FIFO address pins are driven to [01], then FLAGA is the
EP4-Programmable Flag, FLAGB is the EP4-Full Flag, and FLAGC is the EP4-Empty Flag, and
FLAGD defaults as PA7. Set PORTACFG.7 = 1 to use FLAGD which by default is EP2PF(fixed

flag).

The other (non-zero) values of FLAGX[3:0] allow the designer to independently configure the four
flag outputs FLAGA-FLAGD to correspond to any flag—Programmable, Full, or Empty—from any
of the four endpoint FIFOS. This allows each flag to be assigned to any of the four FIFOS, includ-
ing those not currently selected by the FIFOADDR pins. For example, external logic could be filling
the EP2IN FIFO with data while also checking the full flag for the EP40UT FIFO.

Chapter 15. Registers Page 15-19

EZ-USB FX2 Technical Reference Manual

15.5.4 FIFO Reset

FIFORESET Restore FIFOs to Default State E604
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
NAKALL 0 0 0 EP3 EP2 EP1 EPO
W W W W W W W W
X X X X X X X X

Figure 15-11. Restore FIFOs to Reset State

Write 0x80 to this register to NAK all transfers from the host, then write 0x02, 0x04, 0x06, or 0x08

to reset an individual FIFO (i.e., to restore endpoint FIFO flags and byte counts to their default
states), then write 0x00 to restore normal operation.

Bit 3-0 EP3:0 Endpoint

By writing the desired enpoint number (2,4,6,8), FX2 logic resets the individual endpoint.

15.5.5 Breakpoint, Breakpoint Address High, Breakpoint Address Low

BREAKPT Breakpoint Control E605
b7 b6 b5 b4 b3 b2 b1l b0
0 0 0 0 BREAK | BPPULSE BPEN 0
RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-12. Breakpoint Control
Bit 3 Break

Enable Breakpoint

The BREAK bit is set when the CPU address bus matches the address held in the bit break-
point address registers (0xE606/07). The BKPT pin reflects the state of this bit. Write a “1” to

the BREAK bit to clear it. It is not necessary to clear the BREAK bit if the pulse mode bit
(BPPULSE) is set.

Page 15-20 EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

Bit 2 BPPULSE Breakpoint Pulse Mode

Set this bit to “1” to pulse the BREAK bit (and BKPT pin) high for 8 CLKOUT cycles when the
8051 address bus matches the address held in the breakpoint address registers. When this bit
is set to “0”, the BREAK bit (and BKPT pin) remains high until it is cleared by firmware.

Bit 1 BPEN Breakpoint Enable

If this bit is “1”, a BREAK signal is generated whenever the 16-bit address lines match the
value in the Breakpoint Address Registers (BPADDRH:L). The behavior of the BREAK bit and
associated BKPT pin signal is either latched or pulsed, depending on the state of the

BPPULSE bit.

BPADDRH Breakpoint Address High E606
b7 b6 b5 b4 b3 b2 b1 bo
A15 Al4 A13 A12 A1l A10 A9 A8
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-13. Breakpoint Address High
BPADDRL Breakpoint Address Low EGO07
b7 b6 b5 b4 b3 b2 b1 b0
A7 A6 A5 A4 A3 A2 Al A0
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-14. Breakpoint Address Low
Bit 15-0 A15:0 High and Low Breakpoint Address

When the current 16-bit address (code or XDATA) matches the BPADDRH/BPADDRL
address, a breakpoint event occurs. The BPPULSE and BPEN bits in the BREAKPT register

control the action taken on a breakpoint event.

Chapter 15. Registers Page 15-21

EZ-USB FX2 Technical Reference Manual

15.5.6 230 Kbaud Clock (T0, T1, T2)

UART230 230 KBaud clock for T1 E608
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 230UART1 | 230UARTO
R R/W R/W
0 0 0 0 0 0 0 0
Figure 15-15. 230 Kbaud Internally Generated Reference Clock
Bit 1- 0 230UARTX Set 230 KBaud Operation

Setting these bits to 1 overrides the timer inputs to the USARTs, and USARTO and USART1
will use the 230 KBaud clock rate. This mode provides the correct frequency to the USART
regardless of the CPU clock frequency (12, 24, or 48 MHz).

15.5.7 Slave FIFO Interface Pins Polarity

FIFOPINPOLAR Slave FIFO Interface Pins Polarity E609
see Section 15.14

b7 b6 b5 b4 b3 b2 b1 b0

0 0 PKTEND SLOE SLRD SLWR EF FF

R R RIW RIW RIW RIW RIW RIW

0 0 0 0 0 0 0 0

Figure 15-16. Slave FIFO Interface Pins Polarity

Bit 5 PKTEND FIFO Packet End Polarity

This bit selects the polarity of the PKTEND FIFO input pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

Bit 4 SLOE

This bit selects the polarity of the SLOE FIFO input pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

FIFO Output Enable Polarity

Page 15-22 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Bit 3 SLRD FIFO Read Polarity

This bit selects the polarity of the SLRD FIFO input pin. O selects the polarity shown in the data
sheet (active low). 1 selects active high.

Bit 2 SLWR FIFO Write Polarity

This bit selects the polarity of the SLWR FIFO input pin. O selects the polarity shown in the
data sheet (active low). 1 selects active high.

Bit 1 EF Empty Flag Polarity

This bit selects the polarity of the SLWR FIFO output pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

Bit 0 FF Full Flag Polarity

This bit selects the polarity of the SLWR FIFO output pin. 0 selects the polarity shown in the
data sheet (active low). 1 selects active high.

15.5.8 Chip Revision ID

REVID Chip Revision ID EGOA
b7 b6 b5 b4 b3 b2 bl b0
RV7 RV6 RV5 RV4 RV3 RV2 RV1 RVO
R R R R R R R R
0 0 0 0 0 0 0 0

Figure 15-17. Chip Revision ID

Bit 7-0 RV7:0 Chip Revision Number

These register bits define the silicon revision. Consult individual Cypress Semiconductor data
sheets for values.

Chapter 15. Registers Page 15-23

EZ-USB FX2 Technical Reference Manual

15.5.9 Chip Revision Control

REVCTL Chip Revision Control E60B
See Section 15.14

b7 b6 b5 b4 b3 b2 b1 bo

0 0 0 0 0 0 DYN_OUT | ENH_PKT

R R RIW RIW

0 0 0 0 0 0 0 0

Figure 15-18. Chip Revision Control
DYN_OUT and ENH_PKT default to 0 on POR.
Cypress highly recommends setting both bits to 1.

Bit 1 DYN_OUT Disable Auto-Arming at the 0-1 transition of AUTOOUT

When DYN_OUT=0, the core automatically arms the endpoints when AUTOOUT is switched
from 0 to 1. This means that firmware must reset the endpoint (and risk losing endpoint data)
when switching between Auto-Out mode and Manual-Out mode.

When DYN_OUT=1, the core disables auto-arming of the endpoints when AUTOOUT transi-
tions from 0 to 1. This feature allows CPU intervention when switching between AUTO and
Manual mode without having to reset the endpoint.

Note: When DYN_OUT=1 and AUTOOUT=1, the CPU is responsible for “priming the
pump” by initially arming the endpoints (OUTPKTEND w/SKIP=1 to pass packets to host).

Bit 0 ENH_PKT

When ENH_PKT=0, the CPU can neither source OUT packets nor skip IN packets; it has only
the following capabilities:

Enhanced Packet Handling

e OUT packets: Skip or Commit
* IN packets: Commit or Edit/Source

When ENH_PKT=1, the CPU has additional capabilities:

* OUT packets: Skip, Commit, or Edit/Source
* IN packets: Skip, Commit, or Edit/Source

Page 15-24 EZ-USB FX2 Technical Reference Manual v2.1

15.5.10 GPIF Hold Time

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

GPIFHOLDTIME E60C
b7 b6 b5 b4 b3 b2 b1 | bo
0 0 0 0 0 0 HOLDTIME[1:0]
R R R R R R RW RW
0 0 0 0 0 0 0 0

For any transaction where the GPIF writes data onto FD[15:0], this register determines how long
the data is held. Valid choices are 0, %2 or 1 IFCLK cycle. This register applies to any data written
by the GPIF to FD[15:0], whether through a flow state or not.

For non-flow states, the hold amount is really just a delay of the normal (non-held) presentation of
FD[15:0] by the amount specified in HOLDTIME[1:0].

For flow states in which the GPIF is the master on the bus (FLOWSTB.SLAVE = 0), the hold
amount is with respect to the activating edge (see FLOW_MASTERSTB_EDGE) of Master Strobe
(which will be a CTL pin in this case).

For flow states in which the GPIF is the slave on the bus (FLOWSTB.SLAVE = 1), the hold amount
is really just a delay of the normal (non-held) presentation of FD[15:0] by the amount specified in
HOLDTIME[1:0] in reaction to the activating edge of Master Strobe (which will be a RDY pin in this
case). Note the hold amount is NOT directly with respect to the activating edge of Master Strobe in
this case. It is with respect to when the data would normally come out in response to Master Strobe
including any latency to synchronize Master Strobe.

In all cases, the data will be held for the desired amount even if the ensuing GPIF state calls for the
data bus to be tristated. In other words the FD[15:0] output enable will be held by the same amount
as the data itself.

Bits 1-0 HOLDTIME[1:0] GPIF Hold Time

00 =0 IFCLK cycles
01 =% IFCLK cycle
10 =1 IFCLK cycle

11 = Reserved

Chapter 15. Registers Page 15-25

EZ-USB FX2 Technical Reference Manual

15.6 Endpoint Configuration

15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurations

EP1OUTCFG Endpoint 1-OUT Configuration E610
EP1INCFG Endpoint 1-IN Configuration E611
b7 b6 b5 b4 b3 b2 bl b0
VALID 0 TYPE1 TYPEO 0 0 0 0
R/W R/W R/W R

1 0 1 0 0 0 0 0

Figure 15-19. Endpoint 1-OUT/Endpoint 1-IN Configurations

Bit 7 VALID Activate an Endpoint

Set VALID=1 to activate an endpoint, and VALID=0 to de-activate it. All FX2 endpoints default
to VALID. An endpoint whose VALID bit is 0 does not respond to any USB traffic.

Bit 5-4 TYPEL1:0

These bits define the endpoint type, as shown in the table below.

Defines the Endpoint Type

Table 15-11. Endpoint Type Definitions

TYPE1 | TYPEO Endpoint Type
0 0 Invalid
0 1 Invalid
1 0 BULK (default)
1 1 INTERRUPT

Page 15-26 EZ-USB FX2 Technical Reference Manual v2.1

15.6.2 Endpoint 2, 4, 6 and 8 Configuration

%E:'ﬂ--r:l-':;ﬁ

EP2CFG Endpoint 2 Configuration E612
b7 b6 b5 b4 b3 b2 b1 b0
VALID DIR TYPE1 TYPEO SIZE 0 BUF1 BUFO
R/W R/W R/W R/W R/W R/W RIW
1 0 1 0 0 0 1 0
Figure 15-20. Endpoint 2 Configuration
EPACFG Endpoint 4 Configuration E613
b7 b6 b5 b4 b3 b2 b1 b0

VALID DIR TYPE1 TYPEO 0 0 0 0
R/W R/W R/W R/W R R
1 0 1 0 0 0 0 0
Figure 15-21. Endpoint 4 Configuration
EP6CFG Endpoint 6 Configuration E614
b7 b6 b5 b4 b3 b2 b1 b0
VALID DIR TYPE1 TYPEO SIZE 0 BUF1 BUFO
R/W R/W R/W R/W R/W R/W RIW
1 1 1 0 0 0 1 0
Figure 15-22. Endpoint 6 Configuration
EP8SCFG Endpoint 8 Configuration E615
b7 b6 b5 b4 b3 b2 b1 b0
VALID DIR TYPE1 TYPEO 0 0 0 0
R/W R/W R/W R/W R R
1 1 1 0 0 0 0 0

Chapter 15. Registers

Figure 15-23. Endpoint 8 Configuration

Page 15-27

EZ-USB FX2 Technical Reference Manual

These registers configure the large, data-handling FX2 endpoints.

Bit 7 VALID Activate an Endpoint

Set VALID=1 to activate an endpoint, and VALID=0 to de-activate it. All FX2 endpoints default
to valid. An endpoint whose VALID bit is O does not respond to any USB traffic.

Bit 6 DIR Sets Endpoint Direction
0=0UT,1=IN
Bit 5-4 TYPE Defines the Endpoint Type

These bits define the endpoint type, as shown in the table below. The TYPE bits apply to all of
the large-endpoint configuration registers.

Table 15-12. Endpoint Type Definitions

TYPE1l | TYPEO Endpoint Type
0 0 Invalid
0 1 ISOCHRONOUS
1 0 BULK (default)
1 1 INTERRUPT
Bit 3 SIZE Sets Size of Endpoint Buffer

0 =512 bytes, 1 = 1024 bytes
Endpoints 4 and 8 can only be 512 bytes. Endpoints 2 and 6 are selectable.

Bit 1-0 BUF Buffering Type/Amount

The amount of endpoint buffering is presented in Table 15-13.

Table 15-13. Endpoint Buffering Amounts

BUF1 | BUFO Buffering
0 0 Quad
0 1 Invalid
1 0 Double
1 1 Triple

Page 15-28 EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configuration

EP2FIFOCFG Endpoint 2/Slave FIFO Configuration E618
see Section 15.14
EP4FIFOCFG Endpoint 4/Slave FIFO Configuration E619
see Section 15.14
EP6FIFOCFG Endpoint 6/Slave FIFO Configuration EG1A
see Section 15.14
EP8FIFOCFG Endpoint 8/Slave FIFO Configuration E61B
see Section 15.14

b7 b6 b5 b4 b3 b2 bl b0

0 INFM1 OEP1 | AUTOOUT | AUTOIN [ZEROLENIN 0 WORDWIDE

R/W R/W R/W R/W R/W R R/W
0 0 0 0 0 1 0 1

Figure 15-24. Endpoint 2, 4, 6 and 8 /Slave FIFO Configuration

Bit 6 INFM1 IN Full Minus One

When a FIFO configuration register's ‘INEARLY’ or INFM bit is set to 1, the FIFO flags for that
endpoint become valid one sample earlier than when the FULL condition occurs. These bits
take effect only when the FIFOS are operating synchronously—according to an internally- or
externally-supplied clock. Having the FIFO flag indications a clock early simplifies some syn-
chronous interfaces (applies only to IN endpoints).

Bit 5 OEP1 OUT Empty Plus One

When a FIFO configuration register’s ‘OUTEARLY’ or OEP1 bit is set to 1, the FIFO flags for
that endpoint become valid one sample earlier than when the EMPTY condition occurs. These
bits take effect only when the FIFOS are operating synchronously—according to an internally-
or externally-supplied clock. Having the FIFO flag indications a clock early simplifies some
synchronous interfaces (applies only to OUT endpoints).

Bit 4 AUTOOUT Instantaneous Connection to Endpoint FIFO

This bit applies only to OUT endpoints.

When AUTOOUT=1, as soon as a buffer fills with USB data, the buffer is automatically and
instantaneously committed to the endpoint FIFO bypassing the CPU. The endpoint FIFO flags
and buffer counts immediately indicate the change in FIFO status. Refer to the description of
the DYN_OUT bit in Section 15.5.9.

Chapter 15. Registers Page 15-29

EZ-USB FX2 Technical Reference Manual

When AUTOOUT=0, as soon as a buffer fills with USB data, an endpoint interrupt is asserted.
The connection of the buffer to the endpoint FIFO is under control of the firmware, rather than
automatically being connected. Using this method, the firmware can inspect the data in OUT
packets, and based on what it finds, choose to include that packet in the endpoint FIFO or not.
The firmware can even modify the packet data, and then commit it to the endpoint FIFO. Refer
to Enhanced Packet Handling in Section 15.5.9.

The SKIP bit (in the EPxBCL registers) chooses between skipping and committing packet
data. Refer to OUTPKTEND in Section 15.6.8.

Bit 3 AUTOIN Auto Commit to SIE
This bit applies only to IN endpoints.

FX2 has EPXAUTOINLEN registers that allow the firmware to configure endpoints to sizes
smaller than the physical memory sizes used to implement the endpoint buffers (512 or 1024
bytes). For example, suppose the firmware configures the EP2 buffer to be 1024 bytes, and
then sets up EP2 as a 760-byte endpoint by setting EP2AUTOINLEN=760 (this must match
the wMaxPacketSize value in the endpoint descriptor). This makes EP2 appear to be a 760-
byte endpoint to the USB host, even though EP2’s physical buffer is 1024 bytes.

When AUTOIN=1, FX2 automatically packetizes and dispatches IN packets according to the
packet length value it finds in the EPXAUTOINLEN registers. In this example, the GPIF (or an
external master, if the FX2 is in Slave FIFO mode) could load the EP2 buffer with 950 bytes,
which the FX2 logic would then automatically send as two packets, of 760 and 190 bytes.
Refer to Enhanced Packet Handling in Section 15.5.9.

When AUTOIN=0, each packet has to initially be manually committed to SIE, (prime the
pump). See Section 15.5.9, "Chip Revision Control".
Bit 2 ZEROLENIN Enable Zero-length IN Packets

When this flag is '1', a zero length packet will be sent when PKTEND is activated and there are
no bytes in the current packet. If this flag is '0', zero length packets will not be sent on
PKTEND.

Bit 0 WORDWIDE Select Byte/Word FIFOs on PORTB/D Pins

This bit selects byte or word FIFOS on the PORTB and PORTD pins. The WORD bit applies
“for IFCFG=11 or 10".

The OR of all 4 WORDWIDE bits is what causes PORTD to be PORTD or FD[15:8]. The indi-
vidual WORDWIDE bits indicate how data will be passed for each individual endpoint.

Page 15-30 EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low)

EP2AUTOINLENH Endpoint 2 AUTOIN Packet Length E620
see Section 15.14 HIGH
EP6AUTOINLENH Endpoint 6 AUTOIN Packet Length E624
see Section 15.14 HIGH

b7 b6 b5 b4 b3 b2 b1l b0

0 0 0 0 0 PL10 PL9 PL8

R RIW RIW RIW

0 0 0 0 0 0 1 0

Bit 2-0

Figure 15-25. Endpoint 2 and 6 AUTOIN Packet Length High

PL10:8
High three bits of Packet Length.

Packet Length High

EP4AAUTOINLENH Endpoint 4 AUTOIN Packet Length E622
see Section 15.14
EPSBAUTOINLENH Endpoint 8 AUTOIN Packet Length E626
see Section 15.14

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 PL9 PL8

R RIW RIW

0 0 0 0 0 0 1 0

Figure 15-26. Endpoint 4 and 8 AUTOIN Packet Length High

Bit 1-0 PL9:8 Packet Length High

High two bits of Packet Length.

Chapter 15. Registers

Page 15-31

EZ-USB FX2 Technical Reference Manual

EP2AUTOINLENL Endpoint 2 AUTOIN Packet Length E621
see Section 15.14 LOW
EP4AUTOINLENL Endpoint 4 AUTOIN Packet Length E623
see Section 15.14 LOW
EP6AUTOINLENL Endpoint 6 AUTOIN Packet Length E625
see Section 15.14 LOW
EPSBAUTOINLENL Endpoint 8 AUTOIN Packet Length EG27
see Section 15.14 LOW

b7 b6 b5 b4 b3 b2 b1l b0

PL7 PL6 PL5 PL4 PL3 PL2 PL1 PLO

RIW RIW RIW RIW RIW RIW RIW RIW

0 0 0 0 0 0 0 0

Figure 15-27. Endpoint 2, 4, 6, 8 AUTOIN Packet Length Low

Bit 7-0 PL7:0 Packet Length Low

Low eight bits of packet length.

These registers can be used to set smaller packet sizes than the physical buffer size (refer to
the previously described EPXCFG registers). The default packet size is 512 bytes for all end-
points. Note that EP2 and EP6 can have maximum sizes of 1024 bytes, and EP4 and EP8 can

have maximum sizes of 512 bytes, to be consistent with the endpoint structure.

Page 15-32

EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

15.6.5 Endpoint 2, 4, 6, 8 /Slave FIFO Programmable-Level Flag (High/Low)

EP2FIFOPFH Endpoint 2/Slave FIFO Programmable-Level E630
see Section 15.14 F|ag HIGH
[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT |[IN: PKTS[2]|IN: PKTS[1]|IN: PKTS[0] 0 PFC9 PFC8
OUT:PFC12 |OUT:PFC11 |OUT:PFC10
R/W R/W R/W R/W R/W R/W R/W
1 0 0 0 1 0 0 0
EP2FIFOPFH Endpoint 2/Slave FIFO Programmable-Level E630
see Section 15.14 Flag HIGH
[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT |OUT:PFC12|OUT:PFC11|OUT:PFC10 0 PFC9 |IN: PKTS[2]
OUT:PFC8
R/W R/W R/W R/W R/W R/W R/W
1 0 0 0 1 0 0 0
Figure 15-28. Endpoint 2/Slave FIFO Programmable Flag High
Chapter 15. Registers Page 15-33

EZ-USB FX2 Technical Reference Manual

EP6FIFOPFH Endpoint 6/Slave FIFO Programmable-Level E634
see Section 15.14 Flag HIGH
[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT |[IN: PKTS[2]|IN: PKTS[1]|IN: PKTS[0] 0 PFC9 PFC8
OUT:PFC12| OUT:PFC11|OUT:PFC10
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 1 0 0 0
EP6FIFOPFH Endpoint 6/Slave FIFO Programmable-Level E634
see Section 15.14 Flag HIGH
[FULL SPEED (12 Mbit/Sec) Non-lso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT |OUT:PFC12|OUT:PFC11|OUT:PFC10 0 PFC9 |IN: PKTS[2]
OUT:PFC8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 1 0 0 0

Figure 15-29. Endpoint 6/Slave FIFO Programmable Flag High

These registers control the point at which the programmable flag (PF) is asserted for each of the
four endpoint FIFOs. The EPxFIFOPFH:L fields are interpreted differently for OUT and IN end-

points.

The threshold point for the programmable-level flag (PF) is configured as follows:

Each FIFO’s programmable-level flag (PF) asserts when the FIFO reaches a user-defined fullness
threshold. That threshold is configured as follows:

1. For OUT packets: The threshold is stored in PFC12:0. The PF is asserted when the number of
bytes in the entire FIFO is less than/equal to (DECIS=0) or greater than/equal to (DECIS=1)
the threshold.

2. For IN packets, with PKTSTAT = 1: The threshold is stored in PFC9:0. The PF is asserted
when the number of bytes written into the current, not-yet-committed packet in the FIFO is

less than/equal to (DECIS=0) or greater than/equal to (DECIS=1) the threshold.

3. For IN packets, with PKTSTAT = 0: The threshold is stored in two parts: PKTS2:0 holds the
number of committed packets, and PFC9:0 holds the number of bytes in the current, not-yet-
committed packet. The PF is asserted when the FIFO is at or less full than (DECIS=0), or at or
more full than (DECIS=1), the threshold.

Page 15-34

EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

By default, FLAGA is the Programmable-Level Flag (PF) for the endpoint currently pointed to by
the FIFOADR[1:0] pins. For EP2 and EP4, the default endpoint configuration is BULK, OUT, 512,
2x, and the PF pin asserts when the entire FIFO has greater than/equal to 512 bytes. For EP6 and
EP8, the default endpoint configuration is BULK, IN, 512, 2x, and the PF pin asserts when the
entire FIFO has less than/equal to 512 bytes.

In other words, the default-configuration PFs for EP2 and EP4 assert when the FIFOs are half-full,
and the default-configuration PFs for EP6 and EP8 assert when those FIFOs are half-empty.

In the first example below, bits 5-3 have data that is required to complete the transfer. In the sec-
ond example, bits 5-3 do not matter - those bits are don’t cares because PKTSTAT=1:

Example 1:
Assume a Bulk IN transfer over Endpoint 2 and PKTSTAT=0:
EP2FIFOPFH = 0001 0000

* b6=0 (or PKTSTAT=0): this indicates that the transfer will include packets (as defined
by bits 5, 4, and 3) plus bytes (the sum in the flag low register)

* b5b4b3=010 binary (or 2 decimal): this indicates the number of packets to expect dur-
ing the transfer (in this case, two packets...)

EP2FIFOPFL = 0011 0010

e ...plus 50 bytes in the currently filling packet
(the sum of the binary bits in the EP2FIFOPFL register is 2 +16 + 32 = 50 decimal)

DECIS=0, thus PF activates when less than 2 PKTS+50 bytes.
Example 2:

To perform an IN transfer of a number over the same endpoint, set PKTSTAT=1 and write a value
into the EP2FIFOPFL register:

EP2FIFOPFH = 01xxx000

EP2FIFOPFL = 75
Setting PKTSTAT=1 causes the PF decision to be based on the byte count alone, ignoring the
packet count. This mode is valuable for double-buffered endpoints, where only the byte count of

the currently-filling packet is important.

DECIS=0, thus PF activates when less than 75 bytes in the current PKTS.

Bit 1-0 PFC9:8 PF Threshold
Bits 1-0 of EP2FIFOPFH are bits 9-8 of the byte count register.

Chapter 15. Registers Page 15-35

EZ-USB FX2 Technical Reference Manual

EP4FIFOPFH Endpoint 4/Slave FIFO Programmable-Level E632
see Section 15.14 Flag HIGH
[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT 0 IN: PKTS[1] |IN: PKTS[0] 0 0 PFC8
OUT:PFC10| OUT:PFC9
R/W R/W R/W R/W R/W
1 0 0 0 1 0 0 0
EP4FIFOPFH Endpoint 4/Slave FIFO Programmable-Level E632
see Section 15.14 Flag HIGH
[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT 0 OUT:PFC10| OUT:PFC9 0 0 PFC8
R/W R/W R R/W R/W R/W
1 0 0 0 1 0 0 0

Figure 15-30. Endpoint 4/Slave FIFO Programmable Flag High

EZ-USB FX2 Technical Reference Manual v2.1

Page 15-36

%E.’T!-'!'{F.‘EE

EP8FIFOPFH Endpoint 8/Slave FIFO Programmable-Level E636
see Section 15.14 Flag HIGH
[HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT 0 IN: PKTS[1] |IN: PKTS[0] 0 0 PFC8
OUT:PFC10| OUT:PFC9
R/W R/W R/W R/W R/W
0 0 0 0 1 0 0 0
EP8FIFOPFH Endpoint 8/Slave FIFO Programmable-Level E636
see Section 15.14 Flag HIGH
[FULL SPEED (12 Mbit/Sec) Non-Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
DECIS | PKTSTAT 0 OUT:PFC10| OUT:PFC9 0 0 PFC8
R/W R/W R/W R/W R/W
0 0 0 0 1 0 0 0
Figure 15-31. Endpoint 8/Slave FIFO Programmable Flag High
Refer to the discussion for EP2PF.
Bit 7 DECIS PF Polarity

See EP2FIFOPFH and EP6FIFOPFH Register definition.

Bit 6

PKSTAT

See EP2FIFOPFH and EP6FIFOPFH Register definition.

Bit 4-3

Bit 0

Packet Status

PKTS1:0/PFC10:9 PF Threshold

See EP2FIFOPFH and EP6FIFOPFH Register definition.
PFC8 PF Threshold

See EP2FIFOPFH and EP6FIFOPFH Register definition.
Page 15-37

Chapter 15. Registers

EZ-USB FX2 Technical Reference Manual

EP2FIFOPFL Endpoint 2/Slave FIFO Prog. Flag LOW E631
see Section 15.14
EP4FIFOPFL Endpoint 4/Slave FIFO Prog. Flag LOW E633
see Section 15.14
EP6FIFOPFL Endpoint 6/Slave FIFO Prog. Flag LOW E635
see Section 15.14
EP8FIFOPFL Endpoint 8/Slave FIFO Prog. Flag LOW E637
see Section 15.14 [HIGH SPEED (480 Mbit/Sec) Mode and
FULL-SPEED (12 Mbit/Sec) Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
EP2FIFOPFL Endpoint 2/Slave FIFO Prog. Flag LOW E631
see Section 15.14
EP4FIFOPFL Endpoint 4/Slave FIFO Prog. Flag LOW E633
see Section 15.14
EP6FIFOPFL Endpoint 6/Slave FIFO Prog. Flag LOW E635
see Section 15.14
EP8FIFOPFL Endpoint 8/Slave FIFO Prog. Flag LOW E637
see Section 15.14 [FULL SPEED (12 Mbit/Sec) Non-Iso Mode]
b7 b6 b5 b4 b3 b2 bl b0
IN: PKTS[1]{IN: PKTS[0]| PFC5 PFC4 PFC3 PFC2 PFC1 | PFCO
OUT:PFC7 | OUT:PFC6
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-32. Endpoint 2, 4, 6, 8/Slave FIFO Programmable Flag Low

Bit 7-0 PFC7:0 PF Threshold

This register contains the current packet bytes to be transferred when the EPxFIFOPFH regis-
ter requires data.

A

Bits 9:8 of the byte count are in bits 1:0 of EP2FIFOPFH/EP6FIFOPFH.

N

Bit 8 of the byte count is bit 0 of EP4AFIFOPFH/EP8FIFOPFH.

Page 15-38 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

For IN endpoints, the Trigger registers can apply to either the full FIFO, comprising multiple pack-
ets, or only to the current packet being filled. The PKTSTAT bit controls this choice:

15.6.5.1 IN Endpoints

Table 15-14. Interpretation of PF for IN Endpoints

PKTSTAT PF applies to: EPxFIFOPFH:L format
0 PKTS + Current packet bytes PKTS[] PBCJ[]
1 Current packet bytes only PBC[]

Example 1:
The following is an example of how you might use the first case.
Assume a Bulk IN transfer over Endpoint 2. For Bulk transfers, the FX2 packet buffer size is 512
bytes. Assume you have reported a MaxPacketSize value of 100 bytes per packet, and you have
configured the endpoint for triple-buffering. This means that whenever 100 bytes are loaded into a
packet buffer, the FX2 logic commits that packet buffer to the USB interface, essentially adding
100 bytes to the “USB-side” FIFO.
You want to notify the external logic that is filling the endpoint FIFO under two conditions:
» Two of the three packet buffers are full (committed to sending over USB, but not yet sent).
» The current packet buffer is half-full.
In other words, all available IN endpoint buffer space is almost full. You accomplish this by setting:
EP2FIFOPFH = 0001 0000
e b6: PKTSTAT=0 to include packets plus bytes
* b5b4b3=2: two packets...

EP2FIFOPFL = 0011 0010

e ...plus 50 bytes in the currently filling packet

Chapter 15. Registers Page 15-39

EZ-USB FX2 Technical Reference Manual

Example 2:

If you want the PF to inform the outside interface (the logic that is filling the IN FIFO) whenever the
current packet is 75% full, set PKTSTAT=1, and load a packet byte count of 75:

EP2FIFOPFH = 11xxx000
EP2FIFOPFHL = 75

Setting PKTSTAT=1 causes the PF decision to be based on the byte count alone, ignoring the
packet count. This mode is valuable for double-buffered endpoints, where only the byte count of
the currently-filling packet is important.

15.6.5.2 OUT Endpoints

For OUT endpoints, the PF flag applies to the total number of bytes in the multi-packet FIFO, with
no packet count field. Instead of representing byte counts in two segments, a packet count and a
byte count for the currently emptying packet, the byte Trigger values indicate total bytes available
in the FIFO. Note the discontinuity between PBC10 and PBC9.

Notice that the packet byte counts differ in the upper PBC bits because the endpoints support dif-
ferent FIFO sizes: The EP2 FIFO can be a maximum of 4096 bytes long, the EP6 FIFO can be a
maximum of 2048 bytes long, and the EP4 and EP8 FIFOS can be a maximum of 1024 bytes long.
The diagram below shows examples of the maximum FIFO sizes.

—
| 512 | | 512 | 512
EP2 1024 1024 1024
| 512 | | 512 | EP2 512
EP2 EP2
| 512 | | 512 | 512
EP4 1024 EP2 1024 1024
| 512 | | 512 | E£p2
(——)
Ers | 512 | | 512 | oo EP6 1024 rone
| 512 | | 512 | 512
EP6 EP6
EP8 | = | | = | 1024 EP8 EPS8 i 1024
| 512 | | 512 | 512 512
— —

Figure 15-33. Maximum FIFO Sizes

Page 15-40 EZ-USB FX2 Technical Reference Manual v2.1

15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame

%Ef‘f:--!xr{.‘-}ﬁ

EP2ISOINPKTS Endpoint 2 (if ISO) IN Packets Per Frame E640
EP4ISOINPKTS Endpoint 4 (if ISO) IN Packets Per Frame E641
EP6ISOINPKTS Endpoint 6 (if ISO) IN Packets Per Frame E642
EP8ISOINPKTS Endpoint 8 (if ISO) IN Packets Per Frame E643
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 INPPFL | INPPFO
R R R R R/W R/W
0 0 0 0 0 0 0 1
Figure 15-34. Endpoint ISO IN Packets per Frame
Bit 1-0 INPPF1:0 IN Packets per Frame

For ISOCHRONOUS IN endpoints only, these bits determine the number of packets per micro-
frame (high speed mode).

Table 15-15. IN Packets per Microframe

INPPF1 INPPFO Packets
0 0 Invalid
0 1 1
1 0 2
1 1 3

15.6.7 Force IN Packet End

INPKTEND Force IN Packet End E648
see Section 15.5.9
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
SKIP 0 0 0 EP3 EP2 EP1 EPO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
Figure 15-35. Force IN Packet End
Chapter 15. Registers Page 15-41

EZ-USB FX2 Technical Reference Manual

Bit 7 SKIP Skip Packet

When ENH_PKT (REVCTL.0) is set to 1, setting this bit to a “1“ will skip the IN packet. Clear-
ing this bit to 0 automatically ‘dispatches’ an IN buffer.

Bit 3-0 EP3:0

Duplicates the function of the PKTEND pin. This feature is used only for IN transfers.

Endpoint Number

By writing the desired endpoint number (2, 4, 6 or 8), FX2 logic automatically ‘dispatches’ an
IN buffer, for example, it commits the packet to the USB logic, and writes the accumulated
byte count to the endpoint’s byte count register, thus “arming” the IN transfer.

15.6.8 Force OUT Packet End

OUTPKTEND Force OUT Packet End E649
see Section 15.5.9
see Section 15.14
b7 b6 b5 b4 b3 b2 b1l b0
SKIP 0 0 0 EP3 EP2 EP1 EPO
W W W W W W W W
X X X X X X X X
Figure 15-36. Force OUT Packet End
Bit 7 Skip Packet

When ENH_PKT (REVCTL.0) is set to 1, setting this bit to a “1“ will skip the OUT packet.
Clearing this bit to 0 automatically ‘dispatches’ an OUT buffer.

Bits 3:0

EP3:0

Endpoint Number

Replaces the function of EPXxBCL.7=1 (Skip). This feature is for OUT transfers. By writing the
desired endpoint number (2, 4, 6, or 8), FX2 logic automatically skips or commits an OUT

packet (depends on the SKIP bit settings).

NG

Note: This register has no effect if REVCTL.0=0.

Page 15-42

EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

15.7 Interrupts

15.7.1 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Request

EP2FIFOIE EP2 Slave FIFO Flag Interrupt Enable (INT4) E650
see Section 15.14
EP4FIFOIE EP4 Slave FIFO Flag Interrupt Enable (INT4) E652
see Section 15.14
EP6FIFOIE EP6 Slave FIFO Flag Interrupt Enable (INT4) E654
see Section 15.14
EPSFIFOIE EP8 Slave FIFO Flag Interrupt Enable (INT4) E656
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 EDGEPF PF EF FF
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-37. Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable

The Interrupt Registers control all the FX2 Interrupt Enables (IE) and Interrupt requests (IRQ).
Interrupt enables and request bits for endpoint FIFO: Programmable Flag (PF), Empty Flag (EF),
and Full Flag (FF).

To enable any of these interrupts, INTSETUP.1 (INT4SRC) and INTSETUP.0 must be ‘1'.

Bit 3 EDGEPF Firing Edge Programmable Flag

When EDGEPF=0, the interrupt fires on the rising edge of the programmable flag.

When EDGEPF=1, the interrupt fires on the falling edge of the programmable flag.

Note: In order for the CPU to vector to the appropriate interrupt service routine, PF must
be setto a“1* and INTSETUP.0=1 (AV4EN) and INTSETUP.1=1 (INT4SRC). Refer to Sec-
tion 15.7.12

Bit 2 PF

When this bit is '1', the programmable flag interrupt is enabled on INT4. When this bit is '0' the
programmable flag interrupt is disabled.

Programmable Flag

Chapter 15. Registers Page 15-43

EZ-USB FX2 Technical Reference Manual

Bit 1 EF

When this bit is '1', the empty flag interrupt is enabled on INT4. When this bit is '0' the empty
flag interrupt is disabled.

Empty Flag

Bit 0 FF Full Flag

When this bit is '1', the full flag interrupt is enabled on INT4. When this bit is '0' the full flag
interrupt is disabled.

EP2FIFOIRQ EP2 Slave FIFO Flag Interrupt Request (INT4) E651
see Section 15.14
EP4FIFOIRQ EP4 Slave FIFO Flag Interrupt Request (INT4) E653
see Section 15.14
EP6FIFOIRQ EP6 Slave FIFO Flag Interrupt Request (INT4) E655
see Section 15.14
EPSFIFOIRQ EP8 Slave FIFO Flag Interrupt Request (INT4) EG57
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 PF EF FF
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-38. Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Request

Interrupt enables and request bits for endpoint FIFO: Programmable Flag (PF), Empty Flag (EF),
and Full Flag (FF).

Bit 2 PF

FX2 sets PF to 1 to indicate a “programmable flag” interrupt request. The interrupt source is
available in the interrupt vector register IVECA4.

Programmable Flag

Bit 1 EF

FX2 sets EF to 1 to indicate an “empty flag” interrupt request. The interrupt source is available
in the interrupt vector register IVECA4.

Empty Flag

Page 15-44 EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

Bit 0 FF Full Flag

FX2 sets FF to 1 to indicate a “full flag” interrupt request. The interrupt source is available in
the interrupt vector register IVECA4.

NG
Do not clear an IRQ Bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask

value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

15.7.2 IN-BULK-NAK Interrupt Enable/Request

IBNIE IN-BULK-NAK Interrupt Enable (INT2) E658
b7 b6 b5 b4 b3 b2 bl bo
0 0 EP8 EP6 EP4 EP2 EP1 EPO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Figure 15-39. IN-BULK-NAK Interrupt Enable

IBNIRQ IN-BULK-NAK Interrupt Request (INT2) E659
b7 b6 b5 b4 b3 b2 b1 b0
0 0 EP8 EP6 EP4 EP2 EP1 EPO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-40. IN-BULK-NAK Interrupt Request
Bit 5-0 EP[8,6,4,2,1,0] Endpoint-Specific Interrupt Enable

These interrupts occur when the host sends an IN token to a Bulk-IN endpoint which has not
been loaded with data and armed for USB transfer. In this case the FX2 SIE automatically
NAKs the IN token and sets the IBNIRQ bit for the endpoint.

Set IE=1 to enable the interrupt, and IE=0 to disable it.

An IRQ bit is set to 1 to indicate an interrupt request. The interrupt source is available in the
interrupt vector register IVEC2. The firmware clears an IRQ bit by writing a 1 to it.

Chapter 15. Registers Page 15-45

EZ-USB FX2 Technical Reference Manual

NG

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-
ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/Request

NAKIE Endpoint Ping-NAK/IBN Interrupt Enable (INT2) E65A
b7 b6 b5 b4 b3 b2 b1 bo
EP8 EP6 EP4 EP2 EP1 EPO 0 IBN
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-41. Endpoint Ping-NAK/IBN Interrupt Enable
NAKIRQ Endpoint Ping-NAK/IBN Interrupt Request (INT2) E65B
b7 b6 b5 b4 b3 b2 b1 bo
EP8 EP6 EP4 EP2 EP1 EPO 0 IBN
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-42. Endpoint Ping-NAK/IBN Interrupt Request
Bit 7-2 EP[8,6,4,2,1,0] Ping-NAK INT Enable/Request

These registers are active only during high speed (480 Mbits/sec) operation.

USB 2.0 improves the USB 1.1 bus bandwidth utilization by implementing a PING-NAK mech-
anism for OUT transfers. When the host wishes to send OUT data to an endpoint, it first sends
a PING token to see if the endpoint is ready, i.e. it has an empty buffer. If a buffer is not avail-
able, the SIE returns a NAK handshake. PING-NAK transactions continue to occur until an

OUT buffer is available, at which time the FX2 SIE answers a PING with an ACK handshake.
Then the host sends the OUT data to the endpoint.

The OUT Ping NAK interrupt indicates that the host is trying to send OUT data, but the SIE
responded with a NAK because no endpoint buffer memory is available. The firmware may
wish to use this interrupt to free up an OUT endpoint buffer.

Page 15-46

EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

Bit O IBN IBN INT Enable/Request

This bit is automatically set when any of the IN bulk endpoints responds to an IN token with a
NAK. This interrupt occurs when the host sends an IN token to a bulk IN endpoint which has
not yet been armed. Individual enables and requests (per endpoint) are controlled by the
IBNIE and IBNIRQ Registers. Write a “1” to this bit to clear the interrupt request.

The IBN INT only fires on a 0-to-1 transition of an “OR” condition of all IBN sources that are
enabled.

The firmware clears an IRQ bit by writing a 1 to it.

NG
Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writing

back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

15.7.4 USB Interrupt Enable/Request

USBIE USB Interrupt Enables (INT2) E65C
b7 b6 b5 b4 b3 b2 bl b0
0 EPOACK | HSGRANT | URES SUSP SUTOK SOF SUDAV
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-43. USB Interrupt Enables

USBIRQ USB Interrupt Requests (INT2) E65D
b7 b6 b5 b4 b3 b2 bl b0
0 EPOACK | HSGRANT | URES SUSP SUTOK SOF SUDAV
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-44. USB Interrupt Requests

Bit 6 EPOACK EndPoint 0 Acknowledge

Status stage completed

Chapter 15. Registers Page 15-47

EZ-USB FX2 Technical Reference Manual

Bit 5 HSGRANT Grant High Speed Access
The FX2 SIE sets this bit when it has been granted high speed (480 Mbits/sec) access to
USB.

Bit 4 URES USB Reset Interrupt Request

The USB signals a bus reset by driving both D+ and D- low for at least 10 milliseconds. When
the USB core detects the onset of USB bus reset, it activates the URES Interrupt Request.
The USB core sets this bit to “1” when it detects a USB bus reset. Write a “1” to this bit to clear
the interrupt request.

Bit 3 SUSP Suspend Interrupt Request
If the EZ-USB FX2 detects 3 ms of no bus activity, it activates the SUSP (Suspend) Interrupt
Request. The USB core sets this bit to “1” when it detects USB SUSPEND signaling (no bus
activity for 3 ms). Write a “1” to this bit to clear the interrupt request.

Bit 2 SUTOK Setup Token
The USB core sets this bit to “1” when it receives a SETUP token. Write a “1” to this bit to clear
the interrupt request.

Bit 1 SOF Start of Frame
The USB core sets this bit to “1” when it receives a SOF packet. Write a “1” to this bit to clear
the interrupt request.

Bit O SUDAV SETUP Data Available Interrupt Request

The USB core sets this bit to “1” when it has transferred the eight data bytes from an endpoint
zero SETUP packet into internal registers (at SETUPDAT). Write a “1” to this bit to clear the
interrupt request.

WA
Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-
ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask

value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

Page 15-48 EZ-USB FX2 Technical Reference Manual v2.1

15.7.5 Endpoint Interrupt Enable/Request

%E.’T!-'!'{F.‘EE

EPIE Endpoint Interrupt Enables (INT2) EG5E
b7 b6 b5 b4 b3 b2 bl b0
EP8 EP6 EP4 EP2 EP1OUT EP1IN EPOOUT EPOIN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Figure 15-45. Endpoint Interrupt Enables
EPIRQ Endpoint Interrupt Requests (INT2) E65F
b7 b6 b5 b4 b3 b2 bl b0
EP8 EP6 EP4 EP2 EP1OUT EP1IN EPOOUT EPOIN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-46. Endpoint Interrupt Requests

These Endpoint interrupt enable/request registers indicate the pending interrupts for each bulk
endpoint. For IN endpoints, the interrupt asserts when the host takes a packet from the endpoint;
for OUT endpoints, the interrupt asserts when the host supplies a packet to the endpoint.

The IRQ bits function independently of the Interrupt Enable (IE) bits, so interrupt requests are held
whether or not the interrupts are enabled.

#
Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask

value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

Chapter 15. Registers Page 15-49

EZ-USB FX2 Technical Reference Manual

15.7.6 GPIF Interrupt Enable/Request

GPIFIE GPIF Interrupt Enable (INT4) E660
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 GPIFWF | GPIFDONE
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-47. GPIF Interrupt Enable

GPIFIRQ GPIF Interrupt Request (INT4) E661
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 GPIFWF | GPIFDONE
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-48. GPIF Interrupt Request

Bit 1 GPIFWF FIFO Read/Write Waveform

GPIF-to-firmware “hook” in Waveform, when waveform descriptor is programmed to assert the
GPIFWF interrupt.

Bit O GPIFDONE GPIF Idle State

0 = Transaction in progress.

1 = Transaction Done (GPIF is idle, hence GPIF is ready for next Transaction). Fires IRQ4 if
enabled.

The firmware clears an interrupt request bit by writing a “1” to it.
NG
Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-

ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

Page 15-50 EZ-USB FX2 Technical Reference Manual v2.1

15.7.7 USB Error Interrupt Enable/Request

%E.’T!-'!'{F.‘EE

USBERRIE USB Error Interrupt Enables (INT2) E662
b7 b6 b5 b4 b3 b2 b1 b0
ISOEPS ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-49. USB Error Interrupt Enables
USBERRIRQ USB Error Interrupt Request (INT2) E663
b7 b6 b5 b4 b3 b2 b1 b0
ISOEPS ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-50. USB Error Interrupt Request
Bit 7-4 ISOEP[8,6,4,2] ISO Error Packet

The ISO EP Flag is set when:

* |ISO OUT data PIDs arrive out of sequence (applies to high speed only).

* An SO OUT packet was dropped because no buffer space was available for an OUT

packet (in either full- or high-speed modes).

Bit 0

ERRLIMIT

Error Limit

ERRLIMIT counts USB bus errors—CRC, bit stuff, etc., and triggers the interrupt when the
programmed limit (0-15) is reached.

The firmware clears an interrupt request bit by writing a “1” to it. (See the following Note).

N

Do not clear an IRQ bit by reading an IRQ Register, ORing its contents with a bit mask, and writing
back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

Chapter 15. Registers

Page 15-51

EZ-USB FX2 Technical Reference Manual

15.7.8 USB Error Counter Limit

ERRCNTLIM USB Error Counter and Limit E664
b7 b6 b5 b4 b3 b2 b1 bo
EC3 EC2 EC1 ECO LIMIT3 LIMIT2 LIMIT1 LIMITO
R R R R RIW RIW RIW RIW
X X X X 0 1 0 0
Figure 15-51. USB Error Counter and Limit
Bit 7-4 EC3:0

Error count has a maximum value of 15.

Bit 3-0

LIMIT3:0

15.7.9 Clear Error Count

USB Error Count

Error Count Limit

USB bus error count and limit. The firmware can enable the interrupt to cause an interrupt
when the limit is reached. The default limit count is 4.

CLRERRCNT Clear Error Count EC3:0 E665
b7 b6 b5 b4 b3 b2 bl b0
X X X X X X X X
W W W W W W W W
X X X X X X X X

Write OXFF to this register to clear the EC (Error Count) bits in the ERRCNTLIM Register.

Page 15-52

Figure 15-52. Clear Error Count EC3:0

EZ-USB FX2 Technical Reference Manual v2.1

15.7.10 INT 2 (USB) Autovector

%E.’T!-'!'{F.‘EE

INT2IVEC INTERRUPT 2 (USB) Autovector E666
b7 b6 b5 b4 b3 b2 bl b0
0 12Vv4 12v3 12v2 12v1 12Vv0 0 0
R R R R R R R R
0 0 0 0 0 0 0 0
Figure 15-53. INT 2 (USB) Autovector
Bit 6-2 12Vv4:0 INT 2 Autovector

To save the code and processing time required to sort out which USB interrupt occurred, the
USB core provides a second level of interrupt vectoring, called Autovectoring. When the CPU
takes a USB interrupt, it pushes the program counter onto its stack, and then executes a jump
to address 43, where it expects to find a jump instruction to the INT2 service routine.

I2V indicates the source of an interrupt from the USB Core. When the USB core generates an
INT2 (USB) Interrupt Request, it updates INT2IVEC to indicate the source of the interrupt. The
interrupt sources are encoded on 12V4:0.

15.7.11 INT 4 (slave FIFOs & GPIF) Autovector

Chapter 15. Registers

INT4IVEC Interrupt 4 (slave FIFOs & GPIF) Autovector E667
b7 b6 b5 b4 b3 b2 b1 bo
1 0 14v3 14v2 14v1 14V0 0 0
R R R R R R R R
1 0 0 0 0 0 0 0
Figure 15-54. INT 4 (slave FIFOs & GPIF) Autovector
Bit 5-2 14V3:0 INT 4 Autovector

To save the code and processing time required to sort out which FIFO interrupt occurred, the
USB core provides a second level of interrupt vectoring, called Autovectoring. When the CPU
takes a USB interrupt, it pushes the program counter onto its stack, and then executes a jump
to address 53, where it expects to find a jump instruction to the INT4 service routine.

Page 15-53

EZ-USB FX2 Technical Reference Manual

14V indicates the source of an interrupt from the USB Core. When the USB core generates an
INT4 (FIFO/GPIF) Interrupt Request, it updates INT4IVEC to indicate the source of the inter-

rupt. The interrupt sources are encoded on 12V3:0.

15.7.12 INT 2 and INT 4 Setup

INTSETUP INT 2 & INT 4 Setup E668
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 AV2EN 0 INT4SRC AV4EN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Figure 15-55. INT 2 and INT 4 Setup
Bit 3 AV2EN INT2 Autovector Enable

To streamline the code that deals with the USB interrupts, this bit enables autovectoring on
INT2.

Bit 1 INT4SRC INT 4 Source
If 0, INT4 is supplied by the pin. If INTASRC = 1:INT4 supplied internally from FIFO/GPIF
sources.

Bit O AV4EN INT4 Autovector Enable

To streamline the 8051 code that deals with the FIFO interrupts, this bit enables autovectoring
on INT4.

Page 15-54 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

15.8

Input/Output Registers

15.8.1 1/0O PORTA Alternate Configuration

PORTACFG I/O PORTA Alternate Configuration E670
b7 b6 b5 b4 b3 b2 bl b0
FLAGD SLCS 0 0 0 0 INT1 INTO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-56. /0 PORTA Alternate Configuration
NG
Note: Bit 3 is the WUZ2EN bit in the Wakeup register.
The PORTXCFG register selects alternate functions for the PORTX pins.

Bit 7 FLAGD

If IFCFG1:0=11, setting this bit to '1' configures the PA7 pin as FLAGD, a programmable FIFO
flag.

FlagD Alternate Configuration

Bit 6 SLCS SLCS Alternate Configuration
If IFCFG1:0=11, setting this bit to '1' configures the PA7 pin as SLCS, the slave-FIFO chip-
select.

Bit 1-0 INT1:0 Interrupts Enabled for Alternate Configuration

Setting these bits to '1' configures these PORTA pins as the INT1 or INTO pins.

NG
Note: Bits PORTACFG.7 and PORTACFG.6 both affect pin PA7. If both bits are set, FLAGD takes
precedence.

Chapter 15. Registers Page 15-55

EZ-USB FX2 Technical Reference Manual

15.8.2 1/0O PORTC Alternate Configuration

PORTCCFG I/O PORTC Alternate Configuration E671
b7 b6 b5 b4 b3 b2 b1 b0
GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFAQ
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-57. 1/O PORTC Alternate Configuration
Bit 7-0 GPIFAT:0 Enable GPIF Address Pins

Set these pins to “1” to configure this port to output the lower address of enabled GPIF
address pins. Additional bit set in PORTECFG, bit 7.

Set these pins to “0” to configure this as Port C.

15.8.3 1/0 PORTE Alternate Configuration

PORTECFG I/O PORTE Alternate Configuration E672
b7 b6 b5 b4 b3 b2 b1 bo
GPIFAS T2EX INT6 RXD10OUT | RXDOOUT | T20UT T10UT TOOUT
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-58. /0 PORTE Alternate Configuration
Bit 7 GPIFAS Enable GPIF Address Pin

GPIF address bit 8 pin. Set these pin to “1” to configure this port to output the high address of
enabled GPIF address pins.

Set these pin to “0” to configure this as Port E.

Bit 6

T2EX

Timer/Counter 2 Capture/Reload Input.

Page 15-56

Timer 2 Counter

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

Bit 5 INT6 INT6 Interrupt Request

Setting this bit to '1' configures this Port E pin as INT6.

Bit 4 RXD10OUT Mode 0: USART1 Synchronous Data Output
Mode 0: USART1 Synchronous Data Output.

Bit 3 RXDOOUT Mode 0: USARTO Synchronous Data Output
Mode 0: USARTO Synchronous Data Output.

Bit 2-0 T20UT, T10UT, TOOUT Serial Data

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port 0,
serial data output occurs on the RXDOOUT pin, serial data is received on the RXDO pin, and
the TXDO pin provides the shift clock for both transmit and receive. Mode 0: Clock Output
Modes 1-3: Serial Port 0 Data Output.

15.8.4 12C Compatible Bus Control and Status

12CS [2C-Compatible Bus E678
Control and Status
b7 b6 b5 ba b3 b2 b1 b0
START STOP LASTRD ID1 IDO BERR ACK DONE
RIW RIW RIW R R R R R
0 0 0 X X 0 0 0
Figure 15-59. 12C-Compatible Bus Control and Status
Bit 7 START Signal START Condition

Set the START bit to “1” to prepare a bus transfer. If START=1, the next write to I12DAT will
generate the start condition followed by the serialized byte of data in I2DAT. The firmware
loads byte data into I2DAT after setting the START bit. The bus controller clears the START bit
during the ACK interval.

Bit 6 STOP Signal STOP Condition

Set STOP=1 to terminate a bus transfer. The bus controller clears the STOP bit after complet-
ing the STOP condition. If the firmware sets the STOP bit during a byte transfer, the STOP
condition will be generated immediately following the ACK phase of the byte transfer. If no byte
transfer is occurring when the STOP bit is set, the STOP condition will be carried out immedi-
ately on the bus. Data should not be written to 12CS or I2DAT until the STOP bit returns low.

Chapter 15. Registers Page 15-57

EZ-USB FX2 Technical Reference Manual

Bit 5 LASTRD Last Data Read

To read data over the 12C compatible bus, a bus master floats the SDA line and issues clock
pulses on the SCL line. After every eight bits, the master drives SDA low for one clock to indi-
cate ACK. To signal the last byte of the read transfer, the master floats SDA at ACK time to
instruct the slave to stop sending. This is controlled by setting LastRD=1 before reading the
last byte of a read transfer. The bus controller clears the LastRD bit at the end of the transfer
(at ACK time).

Bit 4-3 ID1:0 Boot EEPROM ID

These bits are set by the boot loader to indicate whether an 8-bit address or 16-bit address
EEPROM at slave address 000 or 001 was detected at power-on. Normally, they are used for
debug purposes only.

Bit 2 BERR Bus Error

This bit indicates a bus error. BERR=1 indicates that there was bus contention, which results
when an outside device drives the bus low when it should not, or when another bus master
wins arbitration, taking control of the bus. BERR is cleared when the IDATA register is read or
written.

Bit 1 ACK Acknowledge Bit

Every ninth SCL or a write transfer the slave indicates reception of the byte by asserting ACK.
The bus controller floats SDA during this time, samples the SDA line, and updates the ACK bit
with the complement of the detected value. ACK=1 indicates acknowledge, and ACK=0 indi-
cates not-acknowledge. The USB core updates the ACK bit at the same time it sets DONE=1.
The ACK bit should be ignored for read transfers on the bus.

Bit O DONE Transfer DONE

The bus controller sets this bit whenever it completes a byte transfer, right after the ACK
stage. The controller also generates an Interrupt Request (INT3) when it sets the DONE bit.
The bus controller automatically clears the DONE bit and the Interrupt Request bit whenever
thel2DAT register is read or written.

Page 15-58 EZ-USB FX2 Technical Reference Manual v2.1

15.8.5 I2C-Compatible Bus Data

%E:'ﬂ--r:l-':;ﬁ

I2DAT [2C-Compatible Bus Data E679
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-60. I2C-Compatible Bus Data
Bit 7-0 Data Bits
Eight bits of data; triggers bus transactions.
15.8.6 12C-Compatible Bus Control
12CTL [2C-Compatible Bus Control EG7A
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 STOPIE 400KHZ
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-61. 12C-Compatible Bus Control
Bit 1 STOPIE STOP Interrupt Enable Bit

The STOP bit Interrupt Request is activated when the STOP bit makes a 1-0 transition.To
enable this interrupt, set the STOPIE bit in the RCMODE Register. The firmware determines
the interrupt source by checking the DONE and STOP bits in the I2CS Register.

Chapter 15. Registers

Page 15-59

EZ-USB FX2 Technical Reference Manual

Bit O

400KHZ

High-speed 12C Compatible Bus

For 12C-compatible peripherals that support it, the 12C-compatible bus can run at 400 KHz. For
compatibility, the bus powers-up at the 100-KHz frequency. If 400KHZ=0, the 12C-compatible
bus operates at approximately 100 KHz. If 400KHZ=1, the 12C-compatible bus operates at
approximately 400 KHz. This bit is copied to the 2CCTL register bit 0, which is read-write to
the firmware. Thus the 12C-compatible bus speed is initially set by the EEPROM bit, and may

be changed subsequently by firmware.

15.8.7 AUTOPOINTERs 1 and 2 MOVX access

XAUTODAT1 AUTOPTR1 MOVX access E67B
XAUTODAT2 AUTOPTR2 MOVX access E67C
b7 b6 b5 b4 b3 b2 b1l bo
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-62. AUTOPTR1 & AUTOPTR2 MOVX access (when APTREN=1)

AUTODATAX

Bit 7-0 Data

Data read or written to the xXAUTODATN register accesses the memory addressed by the
AUTOPTRHN/Ln registers, and optionally increments the address after the read or write.

Page 15-60 EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

15.9 UDMA CRC Registers

For complete Flowstate / UDMA information, please contact the Cypress Semiconductor Applica-

tions Department.

UDMACRCH E67D
see Section 15.14
b7 | b6 b5 ba | b3 b2 b1 bo
CRC[15:8]
RW RW RW RW RW RW RW RW
0 1 0 0 1 0 1 0
UDMACRCL E67E
see Section 15.14
b7 | b6 b5 b4 | b3 b2 b1 bo
CRC[7:0]
RW RW RW RW RW RW RW RW
1 0 1 1 1 0 1 0

These two registers are strictly for debug purposes. The CRC represented by these registers is
calculated based on the rules defined in the ATAPI specification for UDMA transfers. It is calcu-
lated automatically by the GPIF as data is transferred on FD[15:0].

These registers will return the live calculation of the CRC at any point in the transfer, but will be
reset to the seed value of 0Ox4ABA upon the GPIF entering the IDLE state. These registers are writ-
able; thus the currently calculated CRC including the seed value can be overwritten at any time.

Chapter 15. Registers

Page 15-61

EZ-USB FX2 Technical Reference Manual

UDMACRCQUALIFIER E67F
b7 b6 b5 b4 b3 b2 | b1 | bo
QENABLE 0 0 0 QSTATE QSIGNAL[2:0]
RW R R R RW RW RW RW
0 0 0 0 0 0 0 0

This register only applies to UDMA IN transactions that are host terminated. Otherwise, this
register can be completely ignored.

This register covers a very specific and potentially nonexistent (from a typical system implementa-
tion standpoint*) UDMA CRC situation. However rare the situation may be, it is still allowed by the
ATAPI specification and thus must be considered and solved by this register.

The ATAPI specification says that if the host (in this case the GPIF) terminates a UDMA IN trans-
action, that the device (e.g., the disk drive) is allowed to send up to 3 more words after the host
deactivates the HDMARDY signal. These “dribble” words may not be of interest to the host and
thus may be discarded. However, CRC must still be calculated on them since the host and the
device must compare and match the CRC at the end of the transaction to consider the transfer
error-free.

The GPIF normally only calculates CRC on words that are written into the FIFO (and not dis-
carded). This poses a problem since in this case some words will be discarded but still must be
included in the CRC calculation. This register gives a way to have the GPIF calculate CRC on the
extra discarded words as well.

The user would program this register in the following way. The QENABLE bit would be set to 1.
The QSIGNAL[2:0] field would be programmed to select the CTL pin that coincides with the UDMA
STOP signal. The QSTATE bit would be programmed to be 0. This would instruct the GPIF to cal-
culate CRC on any DSTROBE edges from the device when STOP=0, which solves the problem.

Bit 7 QENABLE

This bit enables the CRC qualifier feature, and thus the other bits in this register.

Bit 3 QSTATE

This bit says what state the CRC qualifier signal (selected by QSIGNAL[2:0] below) must be in
to allow CRC to be calculated on words being written into the GPIF.

Bits 2-0 QSIGNALJ[2:0]
These bits select which of the CTL[5:0] pins is the CRC qualifier signal.

* - A typical UDMA system will have the device, instead of the host, terminate UDMA IN trans-
fers thus completely avoiding this situation.

Page 15-62 EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

15.10 USB Control

15.10.1 USB Control and Status

USBCS USB Control and Status E680
b7 b6 b5 b4 b3 b2 bl b0
HSM 0 0 0 DISCON |NOSYNSOF| RENUM |SIGRSUME
R R R R R/W R/W R/W R/W
X 0 0 0 0 0 0 0

Figure 15-63. USB Control and Status

Bit 7 HSM High Speed Mode

If HSM=1, the SIE is operating in High Speed Mode, 480 bits/sec. 0-1 transition of this bit
causes a HSGRANT interrupt request.

Bit 3 DISCON Signal a Disconnect on the DISCON Pin

DISCON is one of the EZ-USB FX2 control bits in the USBCS (USB Control and Status) Reg-
ister that control the ReNumeration process. Setting this bit to “1” will disconnect from the USB
bus by removing the internal 1.5 K pull-up resistor from the D+. A boot EEPROM may be used
to default this bit to 1 at startup time. This bit will also reset several registers. See Chapter 7
"Resets" for details.

Bit 2 NOSYNSOF Disable Synthesizing Missing SOFs

If set to 1, disable synthesizing missing SOFs.

Bit 1 RENUM Renumerate

This bit controls whether USB device requests are handled by firmware or automatically by the
FX2. When RENUM=0, the USB core handles all device requests. When RENUM=1, the firm-
ware handles all device requests except Set_Address. Set RENUM=1 during a bus disconnect
to transfer USB control to the firmware. The FX2 automatically sets RENUM=1 under two con-
ditions:

1. Completion of a “C2" boot load
2. When external memory is used (EA=1) and no boot EEPROM is used.

Chapter 15. Registers Page 15-63

EZ-USB FX2 Technical Reference Manual

Bit 0 SIGRSUME Signal Remote Device Resume

Set SIGRSUME=1 to drive the “K” state onto the USB bus. This should be done only by a
device that is capable of remote wakeup, and then only during the SUSPEND state.To signal
RESUME, set SIGRSUME=1, waits 10-15 ms, then sets SIGRSUME=0.

15.10.2 Enter Suspend State

SUSPEND Put Chip into SUSPEND State E681
b7 b6 b5 b4 b3 b2 bl b0
X X X X X X X X
w w w w w w w w
X X X X X X X X
Figure 15-64. Enter Suspend State
Bit 7-0 Suspend Enable Suspend

Regardless of Bus State
Write OXFF to prepare the chip for standby without having to wait for a Bus Suspend.

15.10.3 Wakeup Control & Status

WAKEUPCS Wakeup Control & Status E682
b7 b6 b5 b4 b3 b2 bl b0
wu2 wu WU2POL | WUPOL 0 DPEN WU2EN WUEN
R/W R/W R/W R/W R/W R/W R/W
X X 0 0 0 1 0 1

Figure 15-65. Wakeup Control & Status

FX2 has two pins that can be activated by external logic to take FX2 out of standby. These pins
are called WAKEUP and WU?2.

Bit 7 wu2 Wakeup Initiated from WU2 Pin

The FX2 sets this status bit tol when wakeup was initiated by the WU2 pin. Write a 1 to this bit
to clear it.

Page 15-64 EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

Bit 6 wu Wakeup Initiated from WU Pin

The FX2 sets this bit tol when wakeup was initiated by the WU pin. Write a 1 to this bit to clear
it.

Bit 5 WU2POL
Polarity of the WU2 input pin. 0 = active low, 1 = active high.

Polarity of WU2 Pin

Bit 4 WUPOL
Polarity of the WU input pin. 0 = active low, 1 = active high.

Polarity of WU Pin

Bit 2 DPEN
Activity on the USB DPLUS signal normally initiates a USB wakeup sequence.

Enable/Disable DPLUS Wakeup

O=Disable
1=Enable

Bit 1 WUZ2EN
WUZ2EN =1: enable wakeup from WU2 pin.

Enable WU2 Wakeup

Bit 0 WUEN
WUEN=1: enable wakeup from the WAKEUP pin.

Enable WU Wakeup

15.10.4 Data Toggle Control

TOGCTL Data Toggle Control E683
b7 b6 b5 b4 b3 b2 bl b0
Q S R 10 EP3 EP2 EP1 EPO
R RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-66. Data Toggle Control
Bit 7 Q Data Toggle Value

Q=0 indicates DATAO and Q=1 indicates DATA1, for the endpoint selected by the 1/O and
EP3:0 bits. Write the endpoint select bits (I0 and EP3:0), before reading this value.

Chapter 15. Registers Page 15-65

EZ-USB FX2 Technical Reference Manual

Bit 6 S Set Data Toggle to DATA1
After selecting the desired endpoint by writing the endpoint select bits (I0 and EP3:0), set S=1
to set the data toggle to DATAL. The endpoint selection bits should not be changed while this
bit is written.

Bit 5 R Set Data Toggle to DATAO
Set R=1 to set the data toggle to DATAQ. The endpoint selection bits should not be changed
while this bit is written.

Bit 4 [@] Select IN or OUT Endpoint
Set this bit to select an endpoint direction prior to setting its R or S bit. IO=0 selects an OUT
endpoint, I0=1 selects an IN endpoint.

Bit 3-0 EP3.0

Set these bits to select an endpoint prior to setting its R or S bit. Valid values are 0, 1, 2, 4, 6,
and 8.

Select Endpoint

15.10.5 USB Frame Count High

USBFRAMEH USB Frame Count HIGH E684
b7 b6 b5 b4 b3 b2 b1 bo
0 0 0 0 0 FC10 FC9 FC8
R R R R R
0 0 0 0 0 X X X
Figure 15-67. USB Frame Count HIGH
Bit 2-0 FC10:8 High Bits for USB Frame Count

Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an 11-bit
incrementing frame count. The EZ-USB FX2 copies the frame count into these registers at
every SOF. One use of the frame count is to respond to the USB SYNC_FRAME Request. If
the USB core detects a missing or garbled SOF, it generates an internal SOF and increments
USBFRAMEL-USBRAMEH.

Page 15-66 EZ-USB FX2 Technical Reference Manual v2.1

%E:'ﬂ--r:l-':;ﬁ

15.10.6 USB Frame Count Low

USBFRAMEL USB Frame Count LOW E685
b7 b6 b5 b4 b3 b2 bl b0
FC7 FC6 FC5 FC4 FC3 FC2 FC1 FCO
R R R R R R R R
X X X X X X X X
Figure 15-68. USB Frame Count Low
Bit 7-0 FC7:0 Low Byte for USB Frame Count

Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an 11-bit
incrementing frame count. The EZ-USB FX2 copies the frame count into these registers at
every SOF. One use of the frame count is to respond to the USB SYNC_FRAME Request. If
the USB core detects a missing or garbled SOF, it generates an internal SOF and increments

USBFRAMEL-USBRAMEH.

15.10.7 USB Microframe Count

MICROFRAME USB Microframe Count, 0-7 E686
b7 b6 b5 b4 b3 b2 b1 bo
0 0 0 0 0 MF2 MF1 MFO
R R R R R
0 0 0 0 0 X X X
Figure 15-69. USB Microframe Count
Bit 2-0 MF2:0 Last Occurring Microframe

MICROFRAME contains a count 0-7 which indicates which of the 8 125-microsecond microf-
rames last occurred. This register is active only when FX2 is operating at high speed (480

Mbits/sec).

Chapter 15. Registers

Page 15-67

EZ-USB FX2 Technical Reference Manual

15.10.8 USB Function Address

FNADDR USB Function Address E687
b7 b6 b5 b4 b3 b2 b1 bo
0 FA6 FA5 FA4 FA3 FA2 FA1 FAO
R R R R R R R R
0 0 0 0 0 0 0 0
Figure 15-70. USB Function Address
Bit 6-0 FAG6:0 USB Function Address

During the USB enumeration process, the host sends a device a unique 7-bit address, which
the USB core copies into this register. There is normally no reason for the CPU to know its
USB device address because the USB Core automatically responds only to its assigned
address.

15.11 Endpoints

15.11.1 Endpoint 0 (Byte Count High)

EPOBCH Endpoint 0 Byte Count HIGH EG8A
b7 b6 b5 b4 b3 b2 b1 bo
(BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BCY9) (BCS)
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-71. Endpoint 0 (Byte Count High)

Bit 7-0 BC15:8 High Order Byte Count

Even though the EPO buffer is only 64 bytes, the EPO byte count is expanded to 16 bits to
allow using the SUDPTR with a custom length, instead of USB-dictated length (from Setup
Data Packet and number of requested bytes). The byte count bits in parentheses apply only
when SDPAUTO (SUDPTRCTL.0) = 0.

Page 15-68 EZ-USB FX2 Technical Reference Manual v2.1

of bytes available for transfer (byte count).

15.11.2 Endpoint 0 Control and Status (Byte Count Low)

%E.’T!-'!'{F.‘EE

The SIE normally determines how many bytes to send over EPO in response to a device
request by taking the smaller of (a) the wLength field in the SETUP packet, and (b) the number

EPOBCL Endpoint 0 Byte Count Low E68B
b7 b6 b5 b4 b3 b2 bl b0
(BC7) BC6 BC5 BC4 BC3 BC2 BC1 BCO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
Figure 15-72. Endpoint 0 Control and Status (Byte Count Low)

Bit 7-0 BC7:0 Low Order Byte Count

Even though the EPO buffer is only 64 bytes, the EPO byte count is expanded to 16 bits to
allow using the SUDPTR with a custom length, instead of USB-dictated length (from Setup
Data Packet and number of requested bytes). The byte count bits in parentheses apply only
when SDPAUTO (SUDPTRCTL.0) = 0.

15.11.3 Endpoint 1 OUT and IN Byte Count

EP10OUTBC Endpoint 1 OUT Byte Count E68D
EP1INBC Endpoint 1 IN Byte Count EG8F
b7 b6 b5 b4 b3 b2 b1 bo
0 BC6 BC5 BC4 BC3 BC2 BC1 BCO
RIW RIW RIW RIW RIW RIW RIW RIW
0 X X X X X X X
Figure 15-73. Endpoint 1 OUT/IN Byte Count
Bit 7-0 BC6:0 Endpoint 1 IN/OUT Byte Count

Chapter 15. Registers

Page 15-69

EZ-USB FX2 Technical Reference Manual

15.11.4 Endpoint 2 and 6 Byte Count High

EP2BCH Endpoint 2 Byte Count HIGH E690
see Section 15.14
EP6BCH Endpoint 6 Byte Count HIGH E698
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 BC10 BC9 BCS8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 X X X
Figure 15-74. Endpoint 2 and 6 Byte Count High
Bit 1-0 BC9:8 Endpoint 2, 6 Byte Count High

EP2 and EP6 can be either 512 or 1024 bytes. These are the high 2 bits of the byte-count.

15.11.5 Endpoint 4 and 8 Byte Count High

EP4BCH Endpoint 4 Byte Count HIGH E694
see Section 15.14
EP8BCH Endpoint 8 Byte Count HIGH E69C
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 BC9 BC8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 X X
Figure 15-75. Endpoint 4 and 5 Byte Count High
Bit 0 BCS8 Endpoint 4, 8 Byte Count High

EP4 and EP8 can be 512 bytes only. This is the most significant bit of the byte-count.

Page 15-70 EZ-USB FX2 Technical Reference Manual v2.1

15.11.6 Endpoint 2, 4, 6, 8 Byte Count Low

%E.‘ﬁ'!-'!ﬁ'l-’.’iﬁ

EP2BCL Endpoint 2 Byte Count LOW E691
see Section 15.14
EP4BCL Endpoint 4 Byte Count LOW E695
see Section 15.14
EP6BCL Endpoint 6 Byte Count LOW E699
see Section 15.14
EP8BCL Endpoint 8 Byte Count LOW EG9D
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-76. Endpoint 2, 4, 6, 8 Byte Count Low
Bit 7-0 BC7:0 Byte Count
Low byte count for Endpoints 2, 4, 6, and 8.
15.11.7 Endpoint 0 Control and Status
EPOCS Endpoint 0 Control and Status E6AQ
b7 b6 b5 b4 b3 b2 bl b0
HSNAK 0 0 0 0 0 BUSY STALL
RIW RIW RIW RIW RIW RIW R RIW
1 0 0 0 0 0 0 0
Figure 15-77. Endpoint O Control and Status
Bit 7 HSNAK Hand Shake w/ NAK

The STATUS stage consists of an empty data packet with the opposite direction of the data
stage, or an IN if there was no data stage. This empty data packet gives the device a chance
to ACK, NAK, or STALL the entire CONTROL transfer. Write a “1” to the NAK (handshake
NAK) bit to clear it and instruct the USB core to ACK the STATUS stage. The HSNAK bit holds

Chapter 15. Registers

Page 15-71

EZ-USB FX2 Technical Reference Manual

off completing the CONTROL transfer until the device has had time to respond to a
request.Clear the HSNAK bit (by writing “1” to it) to instruct the USB core to ACK the status
stage of the transfer.

Bit 1 BUSY EPO Buffer Busy

BUSY is a read-only bit that is automatically cleared when a SETUP token arrives. The BUSY
bit is set by writing a byte count to EPOBCL.

Bit O STALL EPO Stalled

STALL is a read/write bit that is automatically cleared when a SETUP token arrives. The
STALL bit is set by writing a “1” to the register bit.

While STALL=1, the USB core sends the STALL PID for any IN or OUT token. This can occur
in either the data or handshake phase of the CONTROL transfer.

NG
To indicate an endpoint stall on endpoint zero, set both STALL and HSNAK bits. Setting the STALL
bit alone causes endpoint zero to NAK forever because the host keeps the control transfer pend-

ing.

15.11.8 Endpoint 1 OUT/IN Control and Status

EP10OUTCS Endpoint 1 OUT Control and Status EGA1
EP1INCS Endpoint 1 IN Control and Status EGA2
b7 b6 b5 b4 b3 b2 bl b0

0 0 0 0 0 0 BUSY STALL
R/W R/W R/W R/W R/W R/W R R/W
0 0 0 0 0 0 0 0
Figure 15-78. Endpoint 1 OUT/IN Control and Status
Bit 1 BUSY OUT/IN Endpoint Busy

The BUSY bit indicates the status of the endpoint's OUT Buffer EP1OUTBUF. The USB core
sets BUSY=0 when the host data is available in the OUT buffer. The firmware sets BUSY=1 by

loading the endpoint’s byte count register.

When BUSY=1, endpoint RAM data is invalid—the endpoint buffer has been emptied by the
firmware and is waiting for new OUT data from the host, or it is the process of being loaded
over the USB. BUSY=0 when the USB OUT transfer is complete and endpoint RAM data in

Page 15-72

EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

EP10OUTBUF is available for the firmware to read. USB OUT tokens for the endpoint are
NAK’d while BUSY=1 (the firmware is still reading data from the OUT endpoint).

A 1-to-0 transition of BUSY (indicating that the firmware can access the buffer) generates an
interrupt request for the OUT endpoint. After the firmware reads the data from the OUT end-
point buffer, it loads the endpoint’s byte count register with any value to re-arm the endpoint,
which automatically sets BUSY=1. This enables the OUT transfer of data from the host in
response to the next OUT token. The CPU should never read endpoint data while BUSY=1.

The BUSY bit, also indicates the status of the endpoint’s IN Buffer EP1INBUF. The USB core
sets BUSY=0 when the endpoint’s IN buffer is empty and ready for loading by the firmware.
The firmware sets BUSY=1 by loading the endpoint’s byte count register.

When BUSY=1, the firmware should not write data to an IN endpoint buffer, because the end-
point FIFO could be in the act of transferring data to the host over the USB. BUSY=0 when the
USB IN transfer is complete and endpoint RAM data is available for firmware access. USB IN
tokens for the endpoint are NAK'd while BUSY=0 (the firmware is still loading data into the
endpoint buffer).

A 1-to-0 transition of BUSY (indicating that the firmware can access the buffer) generates an
interrupt request for the IN endpoint. After the firmware writes the data to be transferred to the
IN endpoint buffer, it loads the endpoint’s byte count register with the number of bytes to trans-
fer, which automatically sets BUSY=1. This enables the IN transfer of data to the host in
response to the next IN token. Again, the CPU should never load endpoint data while
BUSY=1.

The firmware writes a “1” to an IN endpoint busy bit to disarm a previously armed endpoint.
(This sets BUSY=0.) The firmware should do this only after a USB bus reset, or when the host
selects a new interface or alternate setting that uses the endpoint. This prevents stale data
from a previous setting from being accepted by the host’s first IN transfer that uses the new
setting.

Bit O STALL OUT/IN Endpoint Stalled

Each bulk endpoint (IN or OUT) has a STALL bit in its Control and Status Register (bit 0). If the
CPU sets this bit, any requests to the endpoint return aSTALL handshake rather than ACK or
NAK. The Get Status-Endpoint Request returns the STALL state for the endpoint indicated in
byte 4 of the request. Note that bit 7 of the endpoint number EP (byte 4) specifies direction.

Chapter 15. Registers Page 15-73

EZ-USB FX2 Technical Reference Manual

15.11.9 Endpoint 2 Control and Status

EP2CS Endpoint 2 Control and Status E6A3
b7 b6 b5 b4 b3 b2 b1 b0
0 NPAK2 NPAK1 NPAKO FULL EMPTY 0 STALL
R R R R R R R RIW
0 0 1 0 1 0 0 0
Figure 15-79. Endpoint 2 Control and Status
Bit 6-4 NPAK2:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-4 Packets.

Bit 3 FULL
This bit is set to “1” to indicate that the Endpoint FIFO is full.

Endpoint FIFO Full

Bit 2 EMPTY
This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Endpoint FIFO Empty

Bit O STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

ENDPOINT STALL

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

15.11.10 Endpoint 4 Control and Status

EP4CS Endpoint 4 Control and Status E6A4
b7 b6 b5 b4 b3 b2 bl b0
0 0 NPAK1 NPAKO FULL EMPTY 0 STALL
R R R R R R R R/W
0 0 1 0 1 0 0 0

Page 15-74

Figure 15-80. Endpoint 4 Control and Status

EZ-USB FX2 Technical Reference Manual v2.1

%‘Efﬁ'i-'!'{ﬁ&!ﬁ

Bit 5-4 NPAK1:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-2 Packets.

Bit 3 FULL
This bit is set to “1” to indicate that the Endpoint FIFO is full.

Endpoint FIFO Full

Bit 2 EMPTY
This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Endpoint FIFO Empty

Bit O STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

ENDPOINT STALL

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

15.11.11 Endpoint 6 Control and Status

EP6CS Endpoint 6 Control and Status E6AS
b7 b6 b5 ba b3 b2 b1 b0
0 NPAK2 NPAK1 NPAKO FULL EMPTY 0 STALL
R R R R R R R RIW
0 0 0 0 0 1 0 0
Figure 15-81. Endpoint 6 Control and Status
Bit 6-4 NPAK2:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-4 Packets.

Bit 3 FULL
This bit is set to “1” to indicate that the Endpoint FIFO is full.

Endpoint FIFO Full

Bit 2 EMPTY
This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Endpoint FIFO Empty

Bit 0 STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

ENDPOINT STALL

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

Chapter 15. Registers Page 15-75

EZ-USB FX2 Technical Reference Manual

15.11.12 Endpoint 8 Control and Status

EP8CS Endpoint 8 Control and Status E6A6
b7 b6 b5 b4 b3 b2 b1 b0
0 0 NPAK1 NPAKO FULL EMPTY 0 STALL
R R R R R R R RIW
0 0 0 0 0 1 0 0
Figure 15-82. Endpoint 8 Control and Status
Bit 5-4 NPAK1:0 Number of Packets in FIFO

The number of packets in the FIFO. 0-2 Packets.

Bit 3 FULL
This bit is set to “1” to indicate that the Endpoint FIFO is full.

Endpoint FIFO Full

Bit 2 EMPTY
This bit is set to “1” to indicate that the Endpoint FIFO is empty.

Endpoint FIFO Empty

Bit O STALL

Set this bit to “1” to stall an endpoint, and to “0” to clear a stall.

ENDPOINT STALL

When the stall bit is “1,” the USB core returns a STALL handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

Page 15-76 EZ-USB FX2 Technical Reference Manual v2.1

15.11.13 Endpoint 2 and 4 Slave FIFO Flags

%Ef‘f:--!xr{.‘-}ﬁ

EP2FIFOFLGS Endpoint 2 Slave FIFO Flags E6A7
EP4FIFOFLGS Endpoint 4 Slave FIFO Flags EGAS8
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 PF EF FF
R R R R
0 0 0 0 0 0 1 0

Bit 2

Figure 15-83. Endpoint 2 and 4 Slave FIFO Flags

PF
State of the EP2/EP4 Programmable Flag.

Programmable Flag

Bit 1 EF Empty Flag
State of the EP2/EP4 Empty Flag.
Bit 0 FF Full Flag
State of the EP2/EP4 Full Flag.
NG
FIFOPINPOLAR settings do not affect the behavior of these bits.
15.11.14 Endpoint 6 and 8 Slave FIFO Flags
EP6FIFOFLGS Endpoint 6 Slave FIFO Flags E6A9
EP8BFIFOFLGS Endpoint 8 Slave FIFO Flags EGAA
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 PF EF FF
R R R R R
0 0 0 0 0 1 1 0
Figure 15-84. Endpoint 6 and 8 Slave FIFO Flags
Chapter 15. Registers Page 15-77

EZ-USB FX2 Technical Reference Manual

Bit 2 PF
State of the EP6/EP8 Programmable Flag.

&

The default value is different from EP2FIFOFLGS.PF and EP4FIFOFLGS.PF.

Programmable Flag

Bit 1 EF Empty Flag
State of the EP6/EP8 Empty Flag.
Bit O FF Full Flag
State of the EP6/EP8 Full Flag.
NG
FIFOPINPOLAR settings do not affect the behavior of these bits.
15.11.15 Endpoint 2 Slave FIFO Byte Count High
EP2FIFOBCH Endpoint 2 Slave FIFO Total Byte Count HIGH EGAB
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 BC12 BC11 BC10 BC9 BCS8
R R R R R R R
0 0 0 0 0 0 0 0

Bit 4-0

Figure 15-85. Endpoint 2 Slave FIFO Total Byte Count High

BC12:8

Total number of bytes in Endpoint FIFO. Maximum of 4096 bytes.

15.11.16 Endpoint 6 Slave FIFO Total Byte Count High

Byte Count High

EP6FIFOBCH Endpoint 6 Slave FIFO Total Byte Count HIGH E6AF
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 BC11 BC10 BC9 BC8
R R R R R R
0 0 0 0 0 0 0 0

Page 15-78

Figure 15-86. Endpoint 6 Slave FIFO Total Byte Count High

EZ-USB FX2 Technical Reference Manual v2.1

Bit 3-0

BC11:8

Total number of bytes in Endpoint FIFO. Maximum of 2048 bytes.

15.11.17 Endpoint 4 and 8 Slave FIFO Byte Count High

%E.‘T!-'!'-‘I'.‘ES

Byte Count High

EP4FIFOBCH Endpoint 4 Slave FIFO Total Byte Count HIGH EGAD
EP8FIFOBCH Endpoint 8 Slave FIFO Total Byte Count HIGH E6B1
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 BC10 BC9 BCS
R R R R
0 0 0 0 0 0 0 0

Bit 2-0

Figure 15-87. Endpoint 4 and 8 Slave FIFO Byte Count High

BC10:8

Total number of bytes in Endpoint FIFO. Maximum of 1024 bytes.

15.11.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low

Byte Count High

EP2FIFOBCL Endpoint 2 Slave FIFO Total Byte Count LOW EGAC
EP4FIFOBCL Endpoint 4 Slave FIFO Total Byte Count LOW EGAE
EP6FIFOBCL Endpoint 6 Slave FIFO Total Byte Count LOW EGBO
EP8SFIFOBCL Endpoint 8 Slave FIFO Total Byte Count LOW E6B2
b7 b6 b5 b4 b3 b2 bl b0
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO

R

R

R

R

R

R

0

0

0

0

0

0

Bit 7-0

Figure 15-88. Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low

Chapter 15. Registers

BC7:0
Low byte for number of bytes in Endpoint FIFO.

Byte Count High

Page 15-79

EZ-USB FX2 Technical Reference Manual

15.11.19 Setup Data Pointer High and Low Address

SUDPTRH Setup Data Pointer High Address Byte E6B3
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 A1l A10 A9 A8
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-89. Setup Data Pointer High Address Byte
SUDPTRL Setup Data Pointer Low Address Byte E6B4
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
RIW RIW RIW RIW RIW RIW RIW R
X X X X X X X 0
Figure 15-90. Setup Data Pointer Low Address Byte
Bit 15-0 A15:0 Setup Data Pointer

This buffer is used as a target or source by the Setup Data Pointer and it must be WORD (2-
byte) aligned. This 16-bit pointer, SUDPTRH:L provides hardware assistance for handling

CONTROL IN transfers.

When the firmware loads SUDPTRL, the SIE automatically responds to IN commands with the
appropriate data. If SDPAUTO=1, the length field is taken from the packet or descriptor. If
SDPAUTO=0, SUDPTRL triggers a send to the host and the length is taken from the EPOBCH

and EPOBCL bytes.

Page 15-80

EZ-USB FX2 Technical Reference Manual v2.1

15.11.20 Setup Data Pointer Auto

%Ef‘f:--!xr{.‘-}ﬁ

SUDPTRCTL Setup Data Pointer AUTO Mode E6B5
b7 b6 b5 b4 b3 b2 bl bo
0 0 0 0 0 0 0 SDPAUTO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 1
Figure 15-91. Setup Data Pointer AUTO Mode
Bit O SDPAUTO Setup Data Pointer Auto Mode

To send a block of data using the Setup Data Pointer, the block’s starting address is loaded into
SUDPTRH:L. The block length must previously have been set; the method for accomplishing this
depends on the state of the SDPAUTO bit:

 SDPAUTO =0 (Manual Mode): Used for general-purpose block transfers. Firmware
writes the block length to EPOBCH:L.

« SDPAUTO =1 (Auto Mode): Used for sending Device, Configuration, String, Device
Qualifier, and Other Speed Configuration descriptors only. The block length is automati-
cally read from the “length” field of the descriptor itself; no explicit loading of EPOBCH:L is
necessary.

Writing to SUDPTRL starts the transfer; the FX2 automatically sends the entire block, packetizing
as necessary.

NG
When SDPAUTO = 0, writing to EPOBCH:L only sets the block length; it does not arm the transfer
(the transfer is armed by writing to SUDPTRL). Therefore, before performing an EPO transfer

which does not use the Setup Data Pointer (i.e., one which is meant to be armed by writing to
EPOBCL), SDPAUTO must be setto 1.

Chapter 15. Registers Page 15-81

EZ-USB FX2 Technical Reference Manual

15.11.21 Setup Data - 8 Bytes

SETUPDAT 8 Bytes of Setup Data EG6B8-E6BF
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
X X X X X X X X

The setup data bytes are defined as follows:

Figure 15-92. Setup Data - 8 Bytes

SETUPDATI[0] = bmRequestType
SETUPDAT[1] = bmRequest

SETUPDAT[2:3] = wValue
SETUPDATI[4:5] = windex

SETUPDATI[6:7] = wLength

This buffer contains the 8 bytes of SETUP packet data from the most recently received CONTROL

transfer.

The data in SETUPBUF is valid when the SUDAV (Setup Data Available) Interrupt Request bit is

set.

Page 15-82

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

15.12 General Programmable Interface (GPIF)

15.12.1 GPIF Waveform Selector

GPIFWFSELECT Waveform Selector E6CO

b7 b6 b5 b4 b3 b2 bl b0

SINGLEWR1|SINGLEWRO |SINGLERD1|SINGLERDO| FIFOWR1 | FIFOWRO | FIFORD1 | FIFORDO

R/W R/W R/W R/W R/W R/W R/W R/W
1 1 1 0 0 1 0 0

Figure 15-93. GPIF Waveform Selector

Bit 7-6 SINGLEWR1:0 Single Write Waveform Index

Index to the Waveform Program to run when a “Single Write” is triggered by the firmware.

Bit 5-4 SINGLERD1:0 Single Read Waveform Index

Index to the Waveform Program to run when a “Single Read” is triggered by the firmware.

Bit 3-2 FIFOWR1:0 FIFO Write Waveform Index

Index to the Waveform Program to run when a “FIFO Write” is triggered by the firmware.

Bit 1-0 FIFORD1:0 FIFO Read Waveform Index

Index to the Waveform Program to run when a “FIFO Read” is triggered by the firmware.
Select waveform 0 [00], 1 [01], 2 [10] or 3 [11].

15.12.2 GPIF Done and Idle Drive Mode

GPIFIDLECS GPIF Done, GPIF Idle Drive Mode E6C1
b7 b6 b5 b4 b3 b2 bl b0
DONE 0 0 0 0 0 0 IDLEDRV
R/W R/W R/W R/W R/W R/W R/W R/W
1 0 0 0 0 0 0 0

Figure 15-94. GPIF Done and Idle Drive

Chapter 15. Registers Page 15-83

EZ-USB FX2 Technical Reference Manual

Bit 7

DONE

0 = Transaction in progress.
1 = Transaction Done (GPIF is idle, hence GPIF is ready for next Transaction). Fires IRQ4 if
enabled.

Bit O

IDLEDRV

When the GPIF is idle:

0 = Tri-state the Data Bus.
1 = Drive the Data Bus.

15.12.3 CTL Outputs

GPIF Idle State

Set Data Bus when GPIF Idle

GPIFIDLECTL CTL Output States in Idle E6C2

b7 b6 b5 b4 b3 b2 b1 b0

o/ o/ CTL5/ CTL4/ CTL3 CTL2 CTL1 CTLO

CTLOE3 | CTLOE2 | CTLOE1 | CTLOEO
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 1 1 1 1 1 1
Figure 15-95. CTL Output States in Idle

Bit 7-4 CTLOES3:0 CTL Output Enables
Bit 5-0 CTL5:0 CTL Output States

See GPIFCTLCFG, below.

GPIFCTLCFG CTL Output Drive Type E6C3
b7 b6 b5 b4 b3 b2 b1 bo
TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTLO
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-96. CTL Output Drive Type
Bit 7 TRICTL Number Active Outputs/Tristating
Bit 5-0 CTL5:0 CTL Output Drive Type

Page 15-84

EZ-USB FX2 Technical Reference Manual v2.1

The GPIF Control pins (CTL[5:0]) have several output modes:

i&'n'::-l'-:r-:e_:s

e CTL[3:0] can act as CMOS outputs (optionally tristatable) or open-drain outputs.

e CTL[5:4] can act as CMOS outputs or open-drain outputs.
If CTL[3:0] are configured to be tristatable, CTL[5:4] are not available.

Table 15-16. CTL[5:0] Output Modes

(GPI;-E'II'CI:_-IC-ZI;:G 7 GPIFCTLCFGJ[6:0] CTL[3:0] CTL[5:4]
0 0 CMOS, Not Tristatable CMOS, Not Tristatable
0 1 Open-Drain Open-Drain
1 X CMOS, Tristatable Not Available

During the IDLE State, the state of CTL[5:0] depends on the following register bits:

« TRICTL (GPIFCTLCFG.7).
« GPIFCTLCFG[5:0]
« GPIFIDLECTL[5:0].

The combination of these bits defines CTL5:0 during IDLE as follows:

e If TRICTL is 0, GPIFIDLECTL][5:0] directly represent the output states of CTL5:0 during
the IDLE State. The GPIFCTLCFG[5:0] bits determine whether the CTL5:0 outputs are
CMOS or open-drain: If GPIFCTLCFG.x =0, CTLx is CMOS; if GPIFCTLCFG.x = 1, CTLX

is open-drain.

e« If TRICTL is 1, GPIFIDLECTL][7:4] are the output enables for the CTL[3:0] signals, and
GPIFIDLECTL[3:0] are the output values for CTL[3:0]. CTL4 and CTL5 are unavailable in

this mode.

Chapter 15. Registers Page 15-85

EZ-USB FX2 Technical Reference Manual

Table 15-17 illustrates this relationship.

Table 15-17. Control Outputs (CTLx) During the IDLE State

TRICTL Control Output Output State Output Enable

CTLO GPIFIDLECTL.O
CTL1 GPIFIDLECTL.1 N/A

0 CTL2 GPIFIDLECTL.2 (CTL Outputs are always
CTL3 GPIFIDLECTL.3 enabled when TRICTL = 0)
CTL4 GPIFIDLECTL.4
CTL5 GPIFIDLECTL.5
CTLO GPIFIDLECTL.O GPIFIDLECTL.4
CTL1 GPIFIDLECTL.1 GPIFIDLECTL.5

1 CTL2 GPIFIDLECTL.2 GPIFIDLECTL.6
CTL3 GPIFIDLECTL.3 GPIFIDLECTL.7
CTL4 N/A
CTL5 (CTL4 and CTL5 are not available when TRICTL = 1)

15.12.4 GPIF Address High

GPIFADRH GPIF Address High E6C4
see Section 15.14
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 GPIFAS8
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-97. GPIF Address High
Bit O GPIF A8 High Bit of GPIF Address

See GPIFADDRL.

Page 15-86

EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

15.12.5 GPIF Address Low

GPIFADRL GPIF Address Low E6C5
see Section 15.14

b7 b6 b5 b4 b3 b2 b1l b0

GPIFA7 GPIFAG6 GPIFAS GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFAO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Figure 15-98. GPIF Address Low

Bit 7-0 GPIFA7:0 Lower 8 bits of GPIF Address

Data written to this register immediately appears as the bus address on the ADR[7:0] pins.

15.12.6 GPIF Flowstate Registers

For complete Flowstate / UDMA information, please contact the Cypress Semiconductor Applica-
tions Department.

FLOWSTATE E6C6
b7 b6 b5 ba b3 b2 bl b0
FSE 0 0 0 0 FS[2:0]
0 0 0 0 0 0 0 0
RW R R R R RW RW RW

Any one (and only one) of the seven GPIF states in a waveform can be programmed to be the flow
state. This register defines which state, if any, in the next invoked GPIF waveform will be the flow

State.

Bit 7

FSE

Global Flow State Enable

Global enable for the flow state. When it is disabled all flow state registers are don’t care and

the next waveform invocation will not cause a flow state to be used.

Bit 2-0

FS[2:0]

Defines which GPIF state is the flow state. Valid values are 0-6.\

Chapter 15. Registers

Flow State Selection

Page 15-87

EZ-USB FX2 Technical Reference Manual

FLOWLOGIC E6CY
b7 | b6 b5 | ba | b3 b2 | b1 | bo
LFUNCJ[1:0] TERMA[2:0] TERMBI[2:0]
0 0 0 0 0 0 0 0
RW RW RW RW RW RW RW RW

The bit definitions for this register are analogous to the bit definitions in the RDY LOGIC opcode in
a waveform descriptor. Except, instead of controlling the branching for a decision point, it controls
the freezing or flowing of data on the bus in a flow state.

The user defines the states of CTL[5:0] for when the flow logic equals 0 and 1 (see
FLOWEQO_CTL and FLOWEQL1_CTL). This is useful in activating or deactivating protocol ready
signals to hold off an external master (where the GPIF is acting like a slave) in response to internal
FIFO flags warning of an impending underflow or overflow situation.

In the case where the GPIF is the master, then the user also defines whether Master Strobe (a
CTL pin in this case; see FLOWSTB) toggles (reads or writes data on the bus) when the flow logic
evaluates to a 1 or a 0. This is useful for the GPIF to consider protocol ready signals from the
slave as well as FIFO flags to decide when to clock data out of or into the FIFOs and when to
freeze the data flow instead.

It should be noted that this flow logic does not replace the decision point logic defined in a wave-
form descriptor. The decision point logic in a waveform descriptor is still used to decide when to
branch out of the flow state. The decision point logic can use an entirely different pair of ready sig-
nals than the flow logic in making its decisions.

Bits 7-6 LFUNCIJ1:0] Flow State Logic Function
00=A AND B
01=AO0ORB
10=A XORB
11 =!'AANDB

Since the flow logic decision can be based on the output being a 1 or a 0, NAND, NOR, XNOR
and !(!A AND B) operations can be achieved as well. Note that !(!A AND B) is the same as (A
OR !B).

Page 15-88 EZ-USB FX2 Technical Reference Manual v2.1

Bits 5-3
Bits 2-0

0 = RDYI0]
1=RDY[1]
2 = RDY[2]
3 = RDYJ[3]
4 = RDY[4]

TERMA[2:0]
TERMB[2:0]

5 = RDY/[5] or TC-Expiration (depending on GPIF_READYCFG.5)
6 = FIFO Flag (PF, EF, or FF depending on GPIF_EPXFLAGSEL)
7 = 8051 RDY (GPIF_READYCFG.7)

%E.’T!-'!'{F.‘EE

Flow State Logic-Function Arguments

FLOWEQOCTL E6C8
b7 b6 b5 b4 b3 b2 b1 bo
CTLOE3 | CTLOE2 | CTLOEl/ | CTLOEO/ CTL3 CTL2 CTL1 CTLO
CTL5 CTL4
0 0 0 0 0 0 0 0
RW RW RW RW RW RW RW RW
FLOWEQ1CTL E6C9
b7 b6 b5 b4 b3 b2 bl bo
CTLOE3 | CTLOE2 | CTLOE1/ | CTLOEO/ CTL3 CTL2 CTL1 CTLO
CTL5 CTL4
0 0 0 0 0 0 0 0
RW RW RW RW RW RW RW RW

FLOWEQOCTL defines the state of the CTL5:0 pins when the output of the flow logic equals 0;
FLOWEQLCTL defines the state when the logic output equals 1. During a flow state, the CTL
opcode in the waveform descriptor is completely ignored and the behavior of the CTL[5:0] pins are

defined by these two registers instead.

CTLOEX Bit: If TRICTL = 1, CTL5:4 are unused and CTLOE3:0 specifies whether the corre-

sponding CTL3:0 output signals are tristated.

1 = Drive CTLx
0 = Tristate CTLx

Chapter 15. Registers

Page 15-89

EZ-USB FX2 Technical Reference Manual

CTLx Bit: specifies the state to set each CTLx signal to during this entire State.

1 = High level

If the CTLx bit in the GPIFCTLCFG register is set to 1, the output driver will be an
open-drain.

If the CTLx bit in the GPIFCTLCFG register is set to 0, the output driver will be driven
to CMOS levels.

0 = Low level

defined by FLOWEQXCTL and these bits, instead:
e TRICTL (GPIFCTLCFG.7), as described in Section 10.2.3.1, "Control Output Modes".

« GPIFCTLCFG[5:0].

The combination of these bits defines CTL5:0 during a Flow State as follows:

e If TRICTL is 0, FLOWEQXCTL][5:0] directly represent the output states of CTL5:0 during
the Flow State. The GPIFCTLCFGI5:0] bits determine whether the CTL5:0 outputs are
CMOS or open-drain: If GPIFCTLCFG.x = 0, CTLx is CMOS; if GPIFCTLCFG.x =1, CTLx

is open-drain.

e« If TRICTL is 1, FLOWEQXCTL][7:4] are the output enables for the CTL[3:0] signals, and
FLOWEQXxCTL][3:0] are the output values for CTL[3:0]. CTL4 and CTL5 are unavailable in

this mode.

Table 15-17 illustrates this relationship.

Page 15-90 EZ-USB FX2 Technical Reference Manual v2.1

iul ESS

Table 15-18. Control Outputs (CTLx) During the Flow State
Drive Type
TRICTL | Control Output | Output State |(0 = CMOS, Output Enable
1 = Open-Drain)
CTLO FLOWEQXxCTL.O GPIFCTLCFG.0
CTL1 FLOWEQxCTL.1 GPIFCTLCFG.0 N/A
0 CTL2 FLOWEQxCTL.2 GPIFCTLCFG.0 (CTL Outputs are always
CTL3 FLOWEQxCTL.3 GPIFCTLCFG.0 enabled when TRICTL = 0)
CTL4 FLOWEQxCTL.4 GPIFCTLCFG.0
CTL5 FLOWEQxXCTL.5 GPIFCTLCFG.0
CTLO FLOWEQxCTL.O FLOWEQxCTL.4
CTL1 FLOWEQXCTL.1 1L ON/A FLOWEQXCTL.5
UtpUtS are
1 CTL2 FLOWEQxCTL.2 always tristatable FLOWEQXCTL.6
CTL3 FLOWEQxCTL.3 CMOS when FLOWEQxCTL.7
TRICTL = 1)
CTL4 N/A
CTL5 (CTL4 and CTL5 are not available when TRICTL = 1)
FLOWSTB E6CB
b7 b6 b5 b4 b3 b2 | b1 | bo
SLAVE |RDYASYNC| CTLTOGL | SUSTAIN 0 MSTB[2:0]
0 0 1 0 0 0 0 0
RW RW RW RW RW RW RW

* - based on suggested FLOW_LOGIC settings.
This register defines the Master Strobe that causes data to be read or written during a flow state.

For transactions where GPIF is the slave on the bus, the Master Strobe will be one of the RDY[5:0]
pins. This includes external masters that can either write data into GPIF (e.g., UDMA IN) or read
data out of GPIF.

For transactions where GPIF is the master on the bus, the Master Strobe will be one of the
CTL[5:0] pins. This includes cases where the GPIF writes data out to a slave (e.g., UDMA OUT) or
reads data from a slave.

Bit 7 SLAVE

0: GPIF is the master of the bus transaction. This means that one of the CTL[5:0] pins will be
the Master Strobe and the particular one is selected by MSTB[2:0].

Chapter 15. Registers Page 15-91

EZ-USB FX2 Technical Reference Manual

1: GPIF is the slave of the bus transaction. This means that one of the RDY[5:0] pins will be
the Master Strobe and the particular one is selected by MSTB[2:0].

Bit 6 RDYASYNC
If SLAVE is 0 then this bit is ignored, otherwise:

0: Master Strobe (which is a RDY pin in this case) is asynchronous to IFCLK.

1: Master Strobe (which is a RDY pin in this case) is synchronous to IFCLK.

Bit 5 CTLTOGL

If SLAVE is 1 then this bit is ignored. Otherwise, this bit defines which state of the flow logic
(see FLOWLOGIC) causes Master Strobe (which will be a CTL pin in this case) to toggle. For
example, if this bit is set to 1, then if the output of the flow logic equals 1 then Master Strobe
will toggle causing data to flow on the bus. If in the same example the output of the flow logic
equals 0 then Master Strobe will freeze causing data flow to halt on the bus.

Bit 4 SUSTAIN
If SLAVE is 1 then this bit is ignored.
#
Upon exiting a flow state in which SLAVE is 0, Master Strobe (which is a CTL pin in this case) will
normally go back to adhering to the CTL opcodes defined in the waveform descriptor.

Bit 2-0 MSTB[2:0]

If SLAVE is 0 then these bits will select which CTL[5:0] pin is the Master Strobe. If SLAVE is 1
then these bits will select which RDY[5:0] pin is the Master Strobe.

FLOWHOLDOFF E6CA
b7 | b6 | b5 b4 b3 b2 bl | bo
HOPERIODJ[3:0] HOSTATE HOCTL[2:0]
RW RW RW RW RW RW RW RW
0 0 0 1 0 0 1 0

For flow state transactions that meet the following criteria:

Page 15-92

The interface is asynchronous.

GPIF is acting like a slave (FLOWSTB.SLAVE = 1), and thus Master Strobe is a RDY

pin.

data is being written into the GPIF.

EZ-USB FX2 Technical Reference Manual v2.1

%Ef‘f:--!xr{.‘-}ﬁ

4. the rate at which data is being written in exceeds 96 MB/s for a word-wide data bus or
48 MB/s for a byte-wide data bus.

Bits 7-4 HOPERIODI[3:0]
Defines how many IFCLK cycles to assert not ready (HOCTL) to the external master in order
to allow the synchronization interface to catch up.

Bit 3 HOSTATE

Defines what the state of the HOCTL signal should be in to assert not ready.

Bits 2-0 HOCTL[2:0]

Defines which of the six CTL[5:0] pins will be the HOCTL signal which asserts not ready to the
external master when the synchronization detects a potential overflow coming. It should coin-
cide with the CTL[5:0] pin that is picked as the “not ready” signal for the (macro-level) endpoint
FIFO overflow protection.

FLOWSTBEDGE E6CC
b7 b6 b5 b4 b3 b2 bl bo
0 0 0 0 0 0 FALLING | RISING
R R R R R R RIW RW
0 0 0 0 0 0 0 1

This register defines whether the Master Strobe (see FLOWSTB) causes data to read or written on
either the falling edge, the rising edge, or both (double-edge).

Bit 1 FALLING

0: data is not transferred on the falling edge of Master Strobe

1: data is transferred on the falling edge of Master Strobe

Bit 0 RISING

0: data is not transferred on the rising edge of Master Strobe
1: data is transferred on the rising edge of Master Strobe

NG

To cause data to transfer on both edges of Master Strobe, set both bits to 1

Chapter 15. Registers Page 15-93

EZ-USB FX2 Technical Reference Manual

FLOWSTBHPERIOD E6CD
b7 b6 b5 b4 b3 b2 bl bo
D7 D6 D5 D4 D3 D2 D1 DO
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 1 0

If the flow state is such that the GPIF is the master on the bus (FLOWSTB.SLAVE = 0) then Mas-
ter Strobe will be one of the CTL[5:0] pins (see FLOWSTB). While in the flow state, if the flow logic
(see FLOWLOGIC) evaluates in such a way that Master Strobe should toggle (see
FLOWSTB.CTLTOGL), then this register defines the frequency at which it will toggle.

More precisely, this register defines the half period of the Master Strobe toggling frequency. Fur-
ther, to give the user a high degree of resolution this Master Strobe half period is defined in terms
of half IFCLK periods. Therefore, if IFCLK is running at 48 MHz, this gives a resolution of 10.8 nS.

Bits 7-0 D7:0 Master Strobe Half-Period

Number of half IFCLK periods that define the half period of Master Strobe (if it is a CTL pin).
Value must be at least 2, meaning that the minimum half period for Master Strobe is one full
IFCLK cycle.

GPIFHOLDTIME E60C
b7 b6 b5 b4 b3 b2 bl | bo
0 0 0 0 0 0 HOLDTIME[1:0]
RW RW
0 0 0 0 0 0 0 0

For any transaction where the GPIF writes data onto FD[15:0], this register determines how long
the data is held. Valid choices are 0, %2 or 1 IFCLK cycle. This register applies to any data written
by the GPIF to FD[15:0], whether through a flow state or not.

For non-flow states, the hold amount is really just a delay of the normal (non-held) presentation of
FD[15:0] by the amount specified in HOLDTIME[1:0].

For flow states in which the GPIF is the master on the bus (FLOWSTB.SLAVE = 0), the hold
amount is with respect to the activating edge (see FLOW_MASTERSTB_EDGE) of Master Strobe
(which will be a CTL pin in this case).

For flow states in which the GPIF is the slave on the bus (FLOWSTB.SLAVE = 1), the hold amount
is really just a delay of the normal (non-held) presentation of FD[15:0] by the amount specified in
HOLDTIME[1:0] in reaction to the activating edge of Master Strobe (which will be a RDY pin in this
case). Note the hold amount is NOT directly with respect to the activating edge of Master Strobe in

Page 15-94 EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

this case. It is with respect to when the data would normally come out in response to Master Strobe
including any latency to synchronize Master Strobe.

In all cases, the data will be held for the desired amount even if the ensuing GPIF state calls for the
data bus to be tristated. In other words the FD[15:0] output enable will be held by the same amount

as the data itself.

Bits 1-0

HOLDTIME[1:0]
00 =0 IFCLK cycles

01 =% IFCLK cycle

10 = 1 IFCLK cycle

11 = Reserved

15.12.7 GPIF Transaction Count Bytes

GPIFTCB3

GPIF Hold Time

GPIF Transaction Count Byte3 E6CE
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Figure 15-99. GPIF Transaction Count Byte3
Bit 7-0 TC31:24

Refer to Bit O of this register.

GPIF Transaction Count

GPIFTCB2 GPIF Transaction Count Byte2 EGCF
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Chapter 15. Registers

Figure 15-100. GPIF Transaction Count Byte2

Page 15-95

EZ-USB FX2 Technical Reference Manual

Bit 7-0

TC16:23

Refer to Bit O of this register.

GPIF Transaction Count

GPIFTCB1 GPIF Transaction Count Bytel EGDO
see Section 15.14
b7 b6 b5 b4 b3 b2 b1l b0
TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Figure 15-101. GPIF Transaction Count Bytel
Bit 7-0 TC8:15 GPIF Transaction Count

Refer to Bit O of this register.

GPIFTCBO GPIF Transaction Count ByteO E6D1
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
TC7 TC6 TC5 TC4 TC3 TC2 TC1 TCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 1
Figure 15-102. GPIF Transaction Count ByteO
Bit 7-0 TC7:0 GPIF Transaction Count

&

Registers GPIFTCB3, GPIFTCB2, GPIFTCB1, and GPIFTCBO represent the live update of GPIF

transactions.

Page 15-96

EZ-USB FX2 Technical Reference Manual v2.1

15.12.8 Endpoint 2, 4, 6, 8 GPIF Flag Select

%E.’T!-'!'{F.‘EE

EP2GPIFFLGSEL Endpoint 2 GPIF Flag Select E6D2
see Section 15.14
EP4GPIFFLGSEL Endpoint 4 GPIF Flag Select E6DA
see Section 15.14
EP6GPIFFLGSEL Endpoint 6 GPIF Flag Select EGE2
see Section 15.14
EP8GPIFFLGSEL Endpoint 8 GPIF Flag Select EGEA
see Section 15.14
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 FS1 FSO
RIW RIW RIW RIW RIW RIW RIW R/W
0 0 0 0 0 0 0 0

Figure 15-103. Endpoint 2, 4, 6, 8 GPIF Flag Select

Bit 1-0 FS1:0

Table 15-19. Endpoint 2, 4, 6, 8 GPIF Flag Select Values

FS1 FSO Flag
0 0 Programmable
0 1 Empty
1 0 Full
1 1 Reserved

GPIF Flag Select

Only one FIFO flag at a time may be made available to the GPIF as a control input. The FS1:FSO
bits select which flag is made available.

Chapter 15. Registers

Page 15-97

EZ-USB FX2 Technical Reference Manual

15.12.9 Endpoint 2, 4, 6, and 8 GPIF Stop Transaction

EP2GPIFPFSTOP Endpoint 2 GPIF Stop Transaction E6D3
EP4GPIFPFSTOP Endpoint 4 GPIF Stop Transaction E6DB
EP6GPIFPFSTOP Endpoint 6 GPIF Stop Transaction E6GE3
EP8GPIFPFSTOP Endpoint 8 GPIF Stop Transaction EGEB
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 0 FIFO[2,4,6,8]
FLAG
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Figure 15-104. Endpoint 2, 4, 6, and 8 GPIF Stop Transaction

Bit 0

EP[2,4,6,8]PF

Stop on Endpoint Programmable Flag

1= GPIF transitions to “DONE" state when the flag selected by EPXGPIFFLGSEL is asserted.
0= When transaction count has been met.

15.12.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger

EP2GPIFTRIG Endpoint 2 Slave FIFO GPIF Trigger E6D4
see Section 15.14
EPAGPIFTRIG Endpoint 4 Slave FIFO GPIF Trigger E6DC
see Section 15.14
EP6GPIFTRIG Endpoint 6 Slave FIFO GPIF Trigger EGE4
see Section 15.14
EPB8GPIFTRIG Endpoint 8 Slave FIFO GPIF Trigger EGEC
see Section 15.14

b7 b6 b5 b4 b3 b2 bl b0

X X X X X X X X

W w W w W W w W

X X X X X X X X

Figure 15-105. Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger

Write OXFF to this register to initiate a GPIF write. Read from this register to initiate a GPIF read.

Page 15-98

EZ-USB FX2 Technical Reference Manual v2.1

15.12.11 GPIF Data High (16-Bit Mode)

%E.’T!-'!'{F.‘EE

XGPIFSGLDATH GPIF Data HIGH (16-bit mode) E6FO
b7 b6 b5 b4 b3 b2 bl b0
D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
Figure 15-106. GPIF Data High (16-Bit Mode)
Bit 7-0 D15:8 GPIF Data High

Contains the data written to or read from the FD15:8 (PORTD) pins using the GPIF waveform.

15.12.12 Read/Write GPIF Data LOW & Trigger Transaction

XGPIFSGLDATLX Read/Write GPIF Data LOW & Trigger EG6F1
Transaction

b7 b6 b5 ba b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 DO

RIW RIW RIW RIW RIW RIW RIW RIW

X X X X X X X X
Figure 15-107. Read/Write GPIF Data LOW & Trigger Transaction

Bit 7-0 GPIF Data Low /Trigger GPIF Transaction

Contains the data written to or read from the FD7:0 (PORTB) pins. Reading or writing low-byte
triggers a GPIF transaction.

Chapter 15. Registers

Page 15-99

EZ-USB FX2 Technical Reference Manual

15.12.13 Read GPIF Data LOW, No Transaction Trigger

XGPIFSGLDATLNOX Read GPIF Data LOW, No Transaction E6F2
Trigger
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R

Figure 15-108. Read GPIF Data LOW, No Transaction Trigger

Bit 7-0 D7:0 GPIF Data Low /Don’t Trigger GPIF Transaction

Contains the data written to or read from the FD7:0 (PORTB) pins. Read or write low byte
does not trigger GPIF transaction.

15.12.14 GPIF RDY Pin Configuration

GPIFREADYCFG GPIF RDY Pin Configuration EGF3
b7 b6 b5 b4 b3 b2 bl b0
INTRDY SAS TCXRDY5 0 0 0 0 0
R/W R/W R/W R R R R
0 0 0 0 0 0 0 0

Figure 15-109. GPIF Ready Pins

Bit 7 INTRDY Force Ready Condition

Internal RDY. Functions as a sixth RDY input, controlled by the firmware instead of a RDY pin.

Bit 6 SAS RDY Signal Connection to GPIF Input Logic

Synchronous/Asynchronous RDY signals. This bit controls how the RDY signals connect to
the GPIF input logic.

If the internal IFCLK is used to clock the GPIF, the RDY signals can make transitions in an
asynchronous manner, i.e. not referenced to the internal clock. Setting SAS=1 causes the
RDY inputs to pass through two flip-flops for synchronization purposes.

Page 15-100 EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

If the RDY signals are synchronized to IFCLK, and obey the setup and hold times with respect

to this clock, the user can set SAS=0, which causes the RDY signals to pass through a single
flip-flop.

Bit 5 TCXRDY5 TC Expiration Replaces RDY5

To use the transaction count expiration signal as a ready input to a waveform, set this bit to 1.
Setting this bit will take the place of the pin RDY5 in the decision point of the waveform. The
default value of the bit is zero (in other words, the RDY5 from the pin prevails).

15.12.15 GPIF RDY Pin Status

GPIFREADYSTAT GPIF RDY Pin Status E6F4
b7 b6 b5 b4 b3 b2 bl b0
0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDYO
R R R R R R R R
0 0 X X X X X X
Figure 15-110. GPIF Ready Status Pins
Bit 5-0 RDY5:0

Current State of Ready Pins

RDYx. Instantaneous states of the RDY pins. The current state of the RDY[5:0] pins, sampled
at each rising edge of the GPIF clock.

15.12.16 Abort GPIF Cycles

GPIFABORT

Abort GPIF E6F5
b7 b6 b5 b4 b3 b2 b1 bo
X X X X X X X X
w w w w W w w w
X X X X X X X X

Write OXFF to immediately abort a GPIF transaction and transition to the Idle State.

Chapter 15. Registers

Figure 15-111. Abort GPIF

Page 15-101

EZ-USB FX2 Technical Reference Manual

15.13 Endpoint Buffers

15.13.1 EPO IN-OUT Buffer

EPOBUF EPO IN/OUT Buffer E740-E77F
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-112. EPO IN/OUT Buffer
Bit 7-0 D7:0 EPO Data
EPO Data buffer (IN/OUT). 64 bytes.
15.13.2 Endpoint 1-OUT Buffer
EP1OUTBUF EP1-OUT Buffer E780-E7BF
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-113. EP1-OUT Buffer
Bit 7-0 D7:0 EP1-Out Data

EP1-Out Data buffer. 64 bytes.

Page 15-102

EZ-USB FX2 Technical Reference Manual v2.1

15.13.3 Endpoint 1-IN Buffer

%E:'ﬂ--r:l-':;ﬁ

EP1INBUF EP1-IN Buffer E7CO-E7FF
b7 b6 b5 b4 b3 b2 b1 bo
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W RIW RIW RIW R/W
X X X X X X X X
Figure 15-114. EP1-IN Buffer
Bit 7-0 D7:0 EP1-IN Buffer
EP1-IN Data buffer. 64 bytes.
15.13.4 Endpoint 2/Slave FIFO Buffer
EP2FIFOBUF 512/1024-byte EP2/Slave FIFO Buffer FOO0O0-F3FF
b7 b6 b5 b4 b3 b2 b1 bo
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W RIW R/W R/W R/W
X X X X X X X X
Figure 15-115. 512/1024-byte EP2/Slave FIFO Buffer
Bit 7-0 D7:0 EP2 Data
512/1024-byte EP2 buffer.
Chapter 15. Registers Page 15-103

EZ-USB FX2 Technical Reference Manual

15.13.5 512-byte Endpoint 4/Slave FIFO Buffer

EPAFIFOBUF 512-byte EP4/Slave FIFO Buffer F400-F5FF
b7 b6 b5 b4 b3 b2 b1 bo
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X
Figure 15-116. 512-byte EP4/Slave FIFO Buffer
Bit 7-0 D7:0 EP4 Data
512-byte EP4 buffer.
15.13.6 512/1024-byte Endpoint 6/Slave FIFO Buffer
EP6FIFOBUF 512/1024-byte EP6/Slave FIFO Buffer F800-FBFF
b7 b6 b5 b4 b3 b2 b1 bo
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
Figure 15-117. 512/1024-byte EP6/Slave FIFO Buffer
Bit 7-0 D7:0 EP6 Data

512/1024-byte EP6 buffer.

Page 15-104

EZ-USB FX2 Technical Reference Manual v2.1

%E.’T!-'!'{F.‘EE

15.13.7 512-byte Endpoint 8/Slave FIFO Buffer

EPSFIFOBUF 512-byte EP8/Slave FIFO Buffer FCOO-FDFF
b7 b6 b5 b4 b3 b2 bl)
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W RIW RIW RIW R/W
X X X X X X X X
Figure 15-118. 512-byte EP8/Slave FIFO Buffer
Bit 7-0 D7:0 EP8 Data

512-byte EP8 buffer.

15.14 Synchronization Delay

Under certain conditions, some read and write accesses to FX2 registers must be separated by a
synchronization delay. The delay is necessary only under the following conditions:

Between a write to any register in the OXE600-OXE6FF range and a write to one of the reg-

isters in Table 15-20.

Between a write to one of the registers in Tabl e15-20 and a read from any register in the

OxE600-OXE6FF range.

Table 15-20. Registers Which Require a Synchronization Delay

FIFORESET
INPKTEND

EPXFIFOPFH:L

EPXFIFOCFG
PINFLAGSAB
EPXFIFOIE
GPIFIE
UDMACRCH:L
GPIFTRIG
OUTPKTEND
GPIFTCB3
GPIFTCB1

Chapter 15. Registers

FIFOPINPOLAR
EPxBCH:L
EPXAUTOINLENH:L
EPXGPIFFLGSEL
PINFLAGSCD
EPXFIFOIRQ
GPIFIRQ
GPIFADRH:L
EPXGPIFTRIG
REVCTL
GPIFTCB2
GPIFTCBO

Page 15-105

EZ-USB FX2 Technical Reference Manual

The minimum delay length is a function of the IFCLK and CLKOUT (CPU Clock) frequencies, and
is determined by the equation:

. . IFCLK Period O
Minimum Sync Delay, in CPU cycles = [1.5 x L2 TR0 w Note:
LCLKOUT Period ID MmO means “round n upward”

The required delay length is smallest when the CPU is running at its slowest speed (12 MHz, 83.2
ns/cycle) and IFCLK is running at its fastest speed (48 MHz, 20.8 ns/cycle). Under those condi-
tions, the minimum required delay is:

(1.5x %gna = [15x(1.25)] = [1.875] = 2 CPU Cycles

The longest delay is required when the CPU is running at its fastest speed (48MHz, 20.8 ns/cycle)
and IFCLK is running much slower (e.g., 5.2 MHz, 192 ns/cycle):

(1.5x§2%+ Dl = [15x(10.23)] = [15.3] = 16 CPU Cycles

The most-typical FX2 configuration, IFCLK and CLKOUT both running at 48 MHz, requires a mini-
mum delay of:

{1'5x%?£+%} = [15x(2)] = [3] = 3CPU Cycles

The Frameworks fimware supplied with the EZ-USB FX2 Development Kit includes a macro,
called SYNCDELAY, which implements the synchronization delay. The macro is in the file
fx2sdly.h.

Page 15-106 EZ-USB FX2 Technical Reference Manual v2.1

Appendix A
Default Descriptors for Full Speed Mode

Tables A-1 through A-25 show the descriptor data built into the FX2 logic. The tables are presented
in the order that the bytes are stored.

Table A-1 Default USB Device Descriptor

Offset Field Description Value
0 bLength Length of this Descriptor = 18 bytes 12H
1 bDescriptorType Descriptor Type = Device 01H
2 bcdUSB (L) USB Specification Version 2.00 (L) O00H
3 bcdUSB (H) USB Specification Version 2.00 (H) 02H
4 bDeviceClass Device Class (FF is Vendor-Specific) FFH
5 bDeviceSubClass Device Sub-class (FF is Vendor-Specific) FFH
6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH
7 |bMaxPacketSize0 | Maximum Packet Size for EPO = 64 bytes 40H
8 idVendor (L) Vendor ID (L) Cypress Semi = 04B4H B4H
9 idVendor (H) Vendor ID (H) 04H
10 |idProduct (L) Product ID (L) EZ-USB =8613H 13H
11 |idProduct (H) Product ID (H) 86H
12 | bcdDevice (L) Device Release Number (BCD,L) (see individual data sheet) xxH
13 | bcdDevice (H) Device Release Number (BCD,H) (see individual data sheet) xxH
14 |iManufacturer Manufacturer Index String = None OOH
15 |iProduct Product Index String = None O00H
16 |iSerialNumber Serial number Index String = None OOH
17 | bNumConfigurations | Number of Configurations in this Interface = 1 01H

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains Cypress
Semiconductor Vendor, Product and Release Number IDs, and uses no string indices. Release
Number IDs (XX and YY) are found in individual Cypress Semiconductor data sheets. The FX2
logic returns this information response to a “Get_Descriptor/Device” host request.

Appendix A A-1

EZ-USB FX2 Technical Reference Manual

Table A-2 Device Qualifier

Offset Field Description Value
0 bLength Length of this Descriptor = 10 bytes 0AH
1 | bDescriptorType Descriptor Type = Device Qualifier 06H
2 bcdUSB (L) USB Specification Version 2.00 (L) O00H
3 bcdUSB (H) USB Specification Version 2.00 (H) 02H
4 bDeviceClass Device Class (FF is Vendor-Specific) FFH
5 bDeviceSubClass Device Sub-class (FF is Vendor-Specific) FFH
6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH
7 bMaxPacketSize0 Maximum Packet Size for other speed = 64 bytes 40H
8 bNumConfigurations | Number of other Configurations = 1 01H
9 bReserved Must be set to zero OOH

Table A-3 USB Default Configuration Descriptor

Offset Field Description Value
0 bLength Length of this Descriptor = 9 bytes 09H
1 bDescriptorType Descriptor Type = Configuration 02H
2 wTotalLength (L) Total Length (L) Including Interface and Endpoint Descriptors ABH

(171 total)

3 wTotalLength (H) Total Length (H) O0OH
bNumlinterfaces Number of Interfaces in this Configuration 01H
bConfigurationValue | Configuration Value Used by Set_Configuration Request to 01H

Select this interface
iConfiguration Index of String Describing this Configuration = None O00H
bmAttributes Attributes - Bus-Powered, No Wakeup 80H

8 MaxPower Maximum Power - 100 mA 32H

The configuration descriptor includes a total length field (offset 2-3) that encompasses all interface

and endpoint descriptors that follow the configuration descriptor. This configuration describes a
single interface (offset 4). The host selects this configuration by issuing a Set_Configuration
requests specifying configuration #1 (offset 5).

EZ-USB FX2 Technical Reference Manual v2.1

=

iff'fi*l'ﬂi&iﬁ

Table A-4 USB Default Interface 0, Alternate Setting 0

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 |bInterfaceNumber | Zero based index of this interface = 0 00H
3 bAlternateSetting Alternate Setting Value = 0 O0OH
4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 0 00H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 iinterface Index to string descriptor for this interface = None OOH

Table A-5 USB Default Interface 0, Alternate Setting 1

Offset Field Description Value
0 bLength Length of this Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 00H
3 | bAlternateSetting Alternate Setting Value = 1 01H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0O) = 6 06H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 ilnterface Index to string descriptor for this interface = None O00H

Table A-6 Endpoint Descriptor (EP1 out)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 0o7H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint direction (1 is in) and address = OUT1 01H
3 |bmaAttributes XFR Type = BULK 02H
4 | wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O0OH
6 binterval Polling Interval in Milliseconds (1 for iso) 00H

Appendix A A-3

EZ-USB FX2 Technical Reference Manual

Table A-7 Endpoint Descriptor (EP1 in)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 | bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) O00H

Table A-8 Endpoint Descriptor (EP2)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) O00H

Table A-9 Endpoint Descriptor (EP4)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 |bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) O00H

EZ-USB FX2 Technical Reference Manual v2.1

iﬁﬂ-mﬂs

Table A-10 Endpoint Descriptor (EP6)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 0o7H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00OH
6 binterval Polling Interval in Milliseconds (1 for iso) OOH

Table A-11 Endpoint Descriptor (EP8)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) O0OH

Table A-12 Interface Descriptor (Alt. Setting 2)

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 O0OH
3 bAlternateSetting Alternate Setting Value = 2 02H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0O) = 6 06H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 iinterface Index to string descriptor for this interface = None O0OH

Appendix A A-5

EZ-USB FX2 Technical Reference Manual

Table A-13 Endpoint Descriptor (EP1 out)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) O0AH

Table A-14 Endpoint Descriptor (EP1 in)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) OAH

Table A-15 Endpoint Descriptor (EP2

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) OAH

EZ-USB FX2 Technical Reference Manual v2.1

Table A-16 Endpoint Descriptor (EP4)

iﬁﬂ-mﬂs

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00OH
6 binterval Polling Interval in Milliseconds (1 for iso) O00H

Table A-17 Endpoint Descriptor (EP6)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) O0AH

Table A-18 Endpoint Descriptor (EP8)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) OOH

Appendix A A-7

EZ-USB FX2 Technical Reference Manual

Table A-19 Interface Descriptor (Alt. Setting 3)

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 OOH
3 bAlternateSetting Alternate Setting Value =3 03H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass | Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 ilnterface Index to string descriptor for this interface = None O00H

Table A-20 Endpoint Descriptor (EP1 out)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) OAH

Table A-21 Endpoint Descriptor (EP1 in)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) OAH

EZ-USB FX2 Technical Reference Manual v2.1

iﬁﬂ-mﬂs

Table A-22 Endpoint Descriptor (EP2)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H
3 bmAttributes XFR Type = 1SO, No Synchronization, Data endpoint 01H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00OH
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Table A-23 Endpoint Descriptor (EP4)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) OOH

Table A-24 Endpoint Descriptor (EP6)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H
3 bmAttributes XFR Type = ISO, No Synchronization, Data Endpoint 01H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Appendix A A-

EZ-USB FX2 Technical Reference Manual

Table A-25 Endpoint Descriptor (EP8)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) | Maximum Packet Size - High O00H
6 binterval Polling Interval in Milliseconds (1 for iso) O00H

A-10 EZ-USB FX2 Technical Reference Manual v2.1

Appendix B
Default Descriptors for High Speed Mode

Tables B-1 through B-25 show the descriptor data built into the FX2 logic. The tables are presented
in the order that the bytes are stored.

Table B-1 Device Descriptor

Offset Field Description Value
0 bLength Length of this Descriptor = 18 bytes 12H
1 bDescriptorType Descriptor Type = Device 01H
2 bcdUSB (L) USB Specification Version 2.00 (L) O00H
3 bcdUSB (H) USB Specification Version 2.00 (H) 02H
4 bDeviceClass Device Class (FF is Vendor-Specific) FFH
5 bDeviceSubClass Device Sub-class (FF is Vendor-Specific) FFH
6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH
7 |bMaxPacketSize0 | Maximum Packet Size for EPO = 64 bytes 40H
8 idVendor (L) Vendor ID (L) Cypress Semi = 04B4H B4H
9 idVendor (H) Vendor ID (H) 04H
10 |idProduct (L) Product ID (L) EZ-USB =8613H 13H
11 |idProduct (H) Product ID (H) 86H
12 | bcdDevice (L) Device Release Number (BCD,L) (see individual data sheet) xxH
13 | bcdDevice (H) Device Release Number (BCD,H) (see individual data sheet) xxH
14 |iManufacturer Manufacturer Index String = None OOH
15 |iProduct Product Index String = None O00H
16 |iSerialNumber Serial Number Index String = None OOH
17 | bNumConfigurations | Number of Configurations in this Interface = 1 01H

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains Cypress
Semiconductor Vendor, Product and Release Number IDs, and uses no string indices. Release
Number IDs (XX and YY) are found in individual Cypress Semiconductor data sheets. The FX2
logic returns this information response to a “Get_Descriptor/Device” host request.

Appendix B B-11

EZ-USB FX2 Technical Reference Manual

Table B-2 Device Qualifier

Offset Field Description Value
0 bLength Length of this Descriptor = 10 bytes 0AH
1 | bDescriptorType Descriptor Type = Device Qualifier 06H
2 bcdUSB (L) USB Specification Version 2.00 (L) O00H
3 bcdUSB (H) USB Specification Version 2.00 (H) 02H
4 bDeviceClass Device Class (FF is vendor-specific) FFH
5 bDeviceSubClass Device Sub-class (FF is vendor-specific) FFH
6 bDeviceProtocol Device Protocol (FF is vendor-specific) FFH
7 bMaxPacketSize0 Maximum Packet Size for other speed = 64 bytes 40H
8 bNumConfigurations | Number of other Configurations = 1 01H
9 bReserved Must be set to Zero O00H

Table B-3 Configuration Descriptor
Offset Field Description Value
0 bLength Length of this Descriptor = 9 bytes 09H
1 | bDescriptorType Descriptor Type = Configuration 02H
2 wTotalLength (L) Total length (L) including Interface and Endpoint descriptors ABH
(171 total)
3 wTotalLength (H) Total Length (H) O0H
4 bNumlinterfaces Number of Interfaces in this Configuration 01H
bConfigurationValue Configuration value used by Set_Configuration Request to 01H
select this interface
iConfiguration Index of String Describing this Configuration = None O0H
bmAttributes Attributes - Bus Powered, No Wakeup 80H
MaxPower Maximum Power - 100 ma 32H

EZ-USB FX2 Technical Reference Manual v2.1

if YPRESS

Table B-4 Interface Descriptor (Alt. Setting 0)

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 O00H
3 bAlternateSetting Alternate Setting Value =0 O0H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0O) = 0 OOH
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 ilnterface Index to string descriptor for this interface = None OOH

Table B-5 Interface Descriptor (Alt. Setting 1)

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 O0H
3 bAlternateSetting Alternate Setting Value = 1 01H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 ilnterface Index to string descriptor for this interface = None O0H

Table B-6 Endpoint Descriptor (EP1 out)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 |bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

Appendix B B-13

EZ-USB FX2 Technical Reference Manual

Table B-7 Endpoint Descriptor (EP1 in)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

Table B-8 Endpoint Descriptor (EP2)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

Table B-9 Endpoint Descriptor (EP4)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

EZ-USB FX2 Technical Reference Manual v2.1

if YPRESS

Table B-10 Endpoint Descriptor (EP6)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes OOH
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) OOH

Table B-11 Endpoint Descriptor (EP8)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

Table B-12 Interface Descriptor (Alt. Setting 2)

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 O0H
3 bAlternateSetting Alternate Setting Value = 2 02H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 ilnterface Index to string descriptor for this interface = None O0H

Appendix B B-15

EZ-USB FX2 Technical Reference Manual

Table B-13 Endpoint Descriptor (EP1 out)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) Maximum Packet Size - High O0H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-14 Endpoint Descriptor (EP1 in)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-15 Endpoint Descriptor (EP2)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

EZ-USB FX2 Technical Reference Manual v2.1

Table B-16 Endpoint Descriptor (EP4)

if YPRESS

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes OOH
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) OOH

Table B-17 Endpoint Descriptor (EP6)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-18 Endpoint Descriptor (EP8)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 |bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

Appendix B B-17

EZ-USB FX2 Technical Reference Manual

Table B-19 Interface Descriptor (Alt. Setting 3)

Offset Field Description Value
0 bLength Length of the Interface Descriptor 09H
1 | bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 OOH
3 bAlternateSetting Alternate Setting Value = 3 03H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 6 06H
5 binterfaceClass Interface Class = Vendor Specific FFH
6 binterfaceSubClass Interface Sub-class = Vendor Specific FFH
7 binterfaceProtocol Interface Protocol = Vendor Specific FFH
8 iinterface Index to string descriptor for this interface = None O0H

Table B-20 Endpoint Descriptor (EP1 out)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT1 01H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-21 Endpoint Descriptor (EP1 in)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN1 81H
3 bmAttributes XFR Type = INT 03H
4 wMaxPacketSize (L) Maximum Packet Size = 64 bytes 40H
5 WMaxPacketSize (H) Maximum Packet Size - High OOH
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

B-18 EZ-USB FX2 Technical Reference Manual v2.1

if YPRESS

Table B-22 Endpoint Descriptor (EP2)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT2 02H
3 bmAttributes XFR Type = 1SO, No Synchronization, Data endpoint 01H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes OOH
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Table B-23 Endpoint Descriptor (EP4)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

Table B-24 Endpoint Descriptor (EP6)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 |bDescriptorType Descriptor Type =Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN6 86H
3 bmAttributes XFR Type = 1SO, No Synchronization, Data endpoint 01H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) 01H

Appendix B B-19

EZ-USB FX2 Technical Reference Manual

Table B-25 Endpoint Descriptor (EP8)

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 | bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and address = IN8 88H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 512 bytes O0H
5 WMaxPacketSize (H) Maximum Packet Size - High 02H
6 binterval Polling Interval in Milliseconds (1 for iso) O0H

B-20 EZ-USB FX2 Technical Reference Manual v2.1

Appendix C
FX2 Register Summary

The following table is a summary of all the EZ-USB FX2 Registers.

In the “b7-b0” columns, bit positions that contain a 0 or a 1 cannot be written to and, when read,
always return the value shown (0 or 1). Bit positions that contain “-” are available but unused.

The “Default” column shows each register’s power-on-reset value (“x” indicates “undefined”).

The “Access” column indicates each register’s read/write accessibility.

Appendix C c-21

EZ-USB FX2 Technical Reference Manual

EZ-USB FX2 Technical Reference Manual v2.1

Register Summary

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex

Size

Name

[Description

b7

b6

b5

b4

b3

b2

bl

b0

Default

Access

Notes

GPIF Waveform Memories

E400

128

WAVEDATA

GPIF Waveform Descriptor 0, 1,
2, 3data

D7

D6

D5

D4

D3

D2

D1

DO

XXXXXXXX

RW

associated / pointed to by
GPIFWFSELECT

E480

384

reserved

GENERAL CONFIGURATION

E600

CPUCS

CPU Control & Status

PORTCSTB

CLKSPD1

CLKSPDO

CLKINV

CLKOE

8051RES

00000010

rrbbbbbr

PORTCSTB=1: reads/writes
to PORTC generate RD#and
WR# strobes
CLKSPD1:0=8051 clock
speed: 00=12, 01-24, 10=48,
11=X

CLKINV=1toinvert CLKOUT
signal

CLKOE=1 to drive CLKOUT

pin
8051RES=1 to reset 8051

E601

IFCONFIG

Interface Configuration (Ports,
GPIF, slave FIFOs)

IFCLKSRC

3048MHZ

IFCLKOE

IFCLKPOL

ASYNC

GSTATE

IFCFG1

IFCFGO

11000000

RW

IFCLKSRC: FIFO/GPIF
Clock Source: O:external
(IFGCLK pin);

Linternal

3048MHZ: Internal FIFO/
GPIF clock freq: 0=30 MHz,
1=48 MHz

IFCLKOE: FIFO/GPIF Clock
Output Enable (on IFCLK pin
IFCLKPOL: FIFO/GPIF
clock polarity (on IFCLK pin)
ASYNC: 1=FIFOs/GPIF use
internal clock (30/48); O=use
external IFCLK

GSTATE: 1: drive
GSTATE[0:2] on PORTE[0:2
IFCFG[1:0]: 00: ports;

01: reserved; 10: GPIF;

11: Slave FIFO (ext master)

E602

PINFLAGSAB
see Section 15.14

Slave FIFO FLAGA and FLAGB
Pin Configuration

FLAGB3

FLAGB2

FLAGB1

FLAGBO

FLAGA3

FLAGA2

FLAGAL

FLAGAO

00000000

RW

ELAGX][3:0] where
x=A.B.C or D FIFO Flag:

E603

PINFLAGSCD
see Section 15.14

Slave FIFO FLAGC and FLAGD
Pin Configuration

FLAGD3

FLAGD2

FLAGD1

FLAGDO

FLAGC3

FLAGC2

FLAGC1

FLAGCO

01000000

RW

0000: PF for FIFO selected
by FIFOADR([1:0] pins.
0001-0011: reserved

0100: EP2 PF, 0101: EP4PF,
0110: EP6PF, 0111: EP8 PF|
1000: EP2 EF, 1001: EP4EF,
1010: EP6EF, 1011: EP8 EH
1100: EP2 FF, 1101: EP4FF,
1110: EP6FF, 1111: EP8FF

E604

FIFORESET
see Section 15.14

Restore FIFOS to default state

NAKALL

EP3

EP2

EP1

EPO

XXXXXXXX

Set flags and byte counts to
default values; write 0x80 to
NAK all transfers, then write
FIFO number, then write
0x00 to restore normal oper-
ation

E605

BREAKPT

Breakpoint Control

BREAK

BPPULSE

BPEN

00000000

rrrrbbbr

E606

BPADDRH

Breakpoint Address H

Al5

Al4

Al13

Al12

All

A10

A9

A8

XXXXXXXX

RW

E607

BPADDRL

Breakpoint Address L

A7

A6

A5

A4

A3

A2

Al

A0

XXXXXXXX

RW

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 23

EZ-USB FX2 Registers & Buffers

=

=/ ['.:.'.*I RESS

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E608| 1 [UART230 230 Kbaud internally generated 0 0 0 0 0 0 230UART1 | 230UARTO | 00000000| rrrrrrbb (If "1", overrides timer inputs
ref. clock to UART. 230 rate valid for
any CPU clock rate.
E609| 1 |FIFOPINPOLAR slave FIFO Interface pins polar- 0 0 PKTEND SLOE SLRD SLWR EF FF 00000000| rrbbbbbb [0=active low, 1=active high
see Section 15.14 |ity
E60A| 1 |REVID Chip Revision 7 vé rvs rv4 rv3 v2 vl vo See R Chip revision number
Datasheet
E60B| 1 |REVCTL Chip Revision Control 0 0 0 0 0 0 dyn_out enh_pkt |00000000| rrrrrrbb
UDMA
E60C 1 |GPIFHOLDTIME MSTB Hold Time (for UDMA) 0 0 0 0 0 0 HOLDTIME1| HOLDTIMEO| 00000000 rrrrrrbb
3 [reserved
TYPE[00] = illegal; 01=1SO,
ENDPOINT CONFIGURATION 10=BULK, 11=INT.
dir=0:0UT; dir=1:IN
BUF1:0: 00=quad, O1=ille-
gal, 10=double, 11=triple
SIZE=0: 512 bytes, SIZE=1:
1024 bytes
E610(1 |EP1OUTCFG Endpoint 1-OUT Configuration VALID 0 TYPE1 TYPEO 0 0 0 0 10100000 brbbrrrr [default: BULK OUT 64
E611 1 |EP1INCFG Endpoint 1-IN Configuration VALID 0 TYPE1 TYPEO 0 0 0 0 10100000| brbbrrrr |default: BULK OUT 64
E612(1 |EP2CFG Endpoint 2 Configuration VALID DIR TYPE1 TYPEO SIZE 0 BUF1 BUFO 10100010| bbbbbrbb|default: BULK OUT 512 dou:
ble buffered
E613| 1 |EP4CFG Endpoint 4 Configuration VALID DIR TYPE1L TYPEO 0 0 0 0 10100000| bbbbrrrr |default: BULK OUT (512 dou-
ble buffered only choice)
E614| 1 |EP6CFG Endpoint 6 Configuration VALID DIR TYPE1 TYPEO SIZE 0 BUF1 BUFO 11100010 | bbbbbrbb|default: BULK IN 512 double
buffered
E615| 1 |EP8CFG Endpoint 8 Configuration VALID DIR TYPE1L TYPEO 0 0 0 0 11100000| bbbbrrrr |default: BULK IN (512 double
buffered only choice)
2 [reserved
E618 1 |EP2FIFOCFG Endpoint 2 / slave FIFO config- 0 INFM1 OEP1 AUTOOUT | AUTOIN | ZEROLENIN 0 WORDWIDE| 00000101 | rbbbbbrb [INFM1 (In FULL flag minus
see Section 15.14 |uration 1): O=normal, 1=flags active
E619| 1 |EPAFIFOCFG Endpoint 4 / slave FIFO config- 0 INFM1 OEP1 | AUTOOUT | AUTOIN | ZEROLENIN 0 WORDWIDE| 00000101 | rbbbbbrb |On€ byte early
see Section 15.14 |uration OEP1 (Out EMPTY flag plus
. 1): O=normal, 1=flags active
E61A| 1 [EP6FIFOCFG Endpoint 6 / slave FIFO config- 0 INFM1 OEP1 AUTOOUT | AUTOIN | ZEROLENIN 0 WORDWIDE| 00000101 | rbbbbbrb [one byte early
see Section 15.14 |uration AUTOOUT=1--valid OUT
- - packet automatically be-
E61B| 1 |EP8FIFOCFG Endpoint 8 / slave FIFO config- 0 INFM1 OEP1 AUTOOUT | AUTOIN | ZEROLENIN 0 WORDWIDE| 00000101 | rbbbbbrb |50~ part of OUT FIFO
see Section 15.14 |uration AUTOOUT=0--8051 decides
4 [reserved if to commit data to the OUT
FIFO
AUTOIN=1--SIE packetizes/
dispatches IN-FIFO data us-
ing EPXAUTOINLEN
AUTOIN=0--8051 dispatch-
es an IN packet by writing
byte count
WORDWIDE=1:
PB=FD[0:7], PD=FD[8:15];
=1: PB=FD[0:7], PD=PD
ZEROLENIN: O=disable;
1=send zero len pkt on
PKTEND - If any of the four
'WORDWIDE bits=1, core
configures PD as FD15:8

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 24

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E620| 1 |[EP2AUTOINLENH |Endpoint 2 AUTOIN Packet 0 0 0 0 0 PL10 PL9 PL8 00000010| rrrrrbbb [Default is 512 byte packets;
see Section 15.14 [Length H can set smaller IN packets.
E621| 1 |EP2AUTOINLENL |Endpoint 2 AUTOIN Packet PL7 PL6 PL5 PLA PL3 PL2 PLL PLO | 00000000] RW |3\ divides IN-FIFO datainto
see Section 15.14 |Len this-length packets when
: gth L AUTOIN=1. When
E622 1 |EP4AUTOINLENH |Endpoint 4 AUTOIN Packet 0 0 0 0 0 0 PL9 PL8 00000010| rrrrrrbb [AUTOIN=0, 8051 loads a
see Section 15.14 [Length H byte count for every packet
E623| 1 |EP4AUTOINLENL |Endpoint 4 AUTOIN Packet PL7 PL6 PL5 PL4 PL3 PL2 PLL PLO |00000000] Rw |ULERXBCHIL) o it max
see Section 15.14 |Length L byte’s
E624| 1 |[EP6AUTOINLENH |Endpoint 6 AUTOIN Packet 0 0 0 0 0 PL10 PL9 PL8 00000010| rrrrrbbb [EP4,8 can have 512 max
see Section 15.14 [Length H bytes.
E625| 1 |EPGAUTOINLENL |Endpoint 6 AUTOIN Packet PL7 PL6 PL5 PL4 PL3 PL2 PL1 PLO 00000000| RW x‘ﬁﬁ%iﬁg'sms only used for
see Section 15.14 |Length L
E626| 1 |[EPBAUTOINLENH |Endpoint 8 AUTOIN Packet 0 0 0 0 0 0 PL9 PL8 00000010| rrrrrrbb
see Section 15.14 [Length H
E627 1 |EPSAUTOINLENL |Endpoint 8 AUTOIN Packet PL7 PL6 PL5 PL4 PL3 PL2 PL1 PLO 00000000 RW
see Section 15.14 |Length L
8 [reserved
E630 1 |EP2FIFOPFH Endpoint 2 / slave FIFO Pro- DECIS PKTSTAT | IN:PKTS[2] | IN:PKTS[1] | IN:PKTSI[O] 0 PFC9 PFC8 10001000 | bbbbbrbb|DECIS: PF decision bit.
H.S. see Section 15.14 |grammable Flag H OUT:PFC12 | OUT:PFC11 | OUT:PFC10 0: PF=1 when BC <= PF;
E630| 1 |EP2FIFOPFH Endpoint 2/ slave FIFO Pro- DECIS | PKTSTAT | OUT:PFCI2| OUT.PFCIL|OUT:PFCI0) 0 PFCO | IN:PKTS[2] | 10001000] bbbbbrbb| L -t when BC >=Pi
F.S. see Section 15.14 |grammable Flag H OUT:PFC8 fer to full FIFO: =1: PF/BC re-
E631 1 |EP2FIFOPFL Endpoint 2 / slave FIFO Pro- PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW [fer to current packet (IN)
H.S. see Section 15.14 [grammable Flag L (OUT) PF/BC refer to full
E631| 1 |EP2FIFOPFL Endpoint 2 / slave FIFO Pro- IN:PKTS[1] | IN:PKTS[O] PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
FS see Section 15.14 [grammable Flag L OUT:PFC7 | OUT:PFC6
E632 1 |EP4FIFOPFH Endpoint 4 / slave FIFO Pro- DECIS PKTSTAT 0 IN: PKTS[1] | IN: PKTS[0] 0 0 PFC8 10001000| bbrbbrrb |max 1024
H.S. see Section 15.14 |grammable Flag H OUT:PFC10| OUT:PFC9
E632| 1 |EP4FIFOPFH Endpoint 4 / slave FIFO Pro- DECIS PKTSTAT 0 OUT.:PFC10| OUT:PFC9 0 0 PFC8 10001000| bbrbbrrb [max 1024
FS see Section 15.14 [grammable Flag H
E633 1 |EP4FIFOPFL Endpoint 4 / slave FIFO Pro- PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
H.S. see Section 15.14 [grammable Flag L
E633| 1 |EP4FIFOPFL Endpoint 4 / slave FIFO Pro- IN: PKTS[1] | IN: PKTS[O] PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
FS see Section 15.14 [grammable Flag L OUT:PFC7 | OUT:PFC6
E634 1 |EP6FIFOPFH Endpoint 6 / slave FIFO Pro- DECIS PKTSTAT | IN:PKTS[2] | IN:PKTS[1] | IN:PKTSI[O] 0 PFC9 PFC8 00001000| bbbbbrbb{max 2048
H.S. see Section 15.14 |grammable Flag H OUT:PFC12 | OUT:PFC11 | OUT:PFC10
E634| 1 |EP6FIFOPFH Endpoint 6 / slave FIFO Pro- DECIS PKTSTAT | OUT:PFC12| OUT:PFC11 [OUT:PFC10| 0 PFC9 IN:PKTS[2] | 00001000 | bbbbbrbb|max 2048
FS see Section 15.14 [grammable Flag H OUT:PFC8
E635 1 |EP6FIFOPFL Endpoint 6 / slave FIFO Pro- PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
H.S. see Section 15.14 [grammable Flag L
E635| 1 |EP6FIFOPFL Endpoint 6 / slave FIFO Pro- IN:PKTS[1] | IN:PKTS[O] PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
FS see Section 15.14 [grammable Flag L OUT:PFC7 | OUT:PFC6
E636 1 |EPSFIFOPFH Endpoint 8 / slave FIFO Pro- DECIS PKTSTAT 0 IN: PKTS[1] | IN: PKTS[0] 0 0 PFC8 00001000| bbrbbrrb [max 1024
H.S. see Section 15.14 |grammable Flag H OUT:PFC10| OUT:PFC9
E636| 1 |EPSFIFOPFH Endpoint 8 / slave FIFO Pro- DECIS PKTSTAT 0 OUT.:PFC10| OUT:PFC9 0 0 PFC8 00001000| bbrbbrrb [max 1024
FS see Section 15.14 [grammable Flag H
E637 1 |EPSFIFOPFL Endpoint 8 / slave FIFO Pro- PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
H.S. see Section 15.14 [grammable Flag L
E637| 1 |EPSFIFOPFL Endpoint 8 / slave FIFO Pro- IN: PKTS[1] | IN: PKTS[O] PFC5 PFC4 PFC3 PFC2 PFC1 PFCO 00000000 RW
FS see Section 15.14 [grammable Flag L OUT:PFC7 | OUT:PFC6
8 [reserved

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 25

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E640(1 |EP2ISOINPKTS EP2 (if ISO) IN Packets per 0 0 0 0 0 0 INPPF1 INPPFO | 00000001| rrrrrrbb [INPPF1:0: 00=illegal,
frame (1-3) 01=1 per frame, 10=2 per
frame, 11=3 per frame
E641 1 |EP4ISOINPKTS EP4 (if ISO) IN Packets per 0 0 0 0 0 0 INPPF1 INPPFO | 00000001 | rrrrrrbb
frame (1-3)
E642(1 |EP6ISOINPKTS EPG6 (if ISO) IN Packets per 0 0 0 0 0 0 INPPF1 INPPFO | 00000001| rrrrrrbb
frame (1-3)
E643 1 |EP8ISOINPKTS EPS8 (if ISO) IN Packets per 0 0 0 0 0 0 INPPF1 INPPFO | 00000001 | rrrrrrbb
frame (1-3)
4 |reserved
E648| 1 [INPKTEND Force IN Packet End Skip 0 0 0 EP3 EP2 EP1 EPO XXXXXXXX w Same function as slave inter-
see Section 15.14 face PKTEND pin, but 8051
controls dispatch of IN,
Typically used after a GPIF
FIFO transaction completes
to send jagged edge pkt,
user needs to check status of
FIFO full flag for available
buffer before doing PKTEND
E649| 7 |OUTPKTEND Force out Packet End Skip 0 0 0 EP3 EP2 EP1 EPO XXXXXXXX W REVCTL.0=1 to enable this
feature
INTERRUPTS
E650 1 |EP2FIFOIE Endpoint 2 slave FIFO Flag In- 0 0 0 0 EDGEPF PF EF FF 00000000 RW |EDGEPF=0; Rising edge
see Section 15.14 |terrupt Enable EDGEPF=1,; Falling edge
E651| 1 |EP2FIFOIRQ Endpoint 2 slave FIFO Flag In- 0 0 0 0 0 PF EF FF 00000000 RW
see Section 15.14 |terrupt Request
E652 1 |EP4FIFOIE Endpoint 4 slave FIFO Flag In- 0 0 0 0 EDGEPF PF EF FF 00000000 RW
see Section 15.14 |terrupt Enable
E653| 1 |EP4FIFOIRQ Endpoint 4 slave FIFO Flag In- 0 0 0 0 0 PF EF FF 00000000 RW
see Section 15.14 |terrupt Request
E654 1 |EP6FIFOIE Endpoint 6 slave FIFO Flag In- 0 0 0 0 EDGEPF PF EF FF 00000000 RW
see Section 15.14 |terrupt Enable
E655(1 |EP6FIFOIRQ Endpoint 6 slave FIFO Flag In- 0 0 0 0 0 PF EF FF 00000000 RW
see Section 15.14 |terrupt Request
E656 1 |EPSFIFOIE Endpoint 8 slave FIFO Flag In- 0 0 0 0 EDGEPF PF EF FF 00000000 RW
see Section 15.14 |terrupt Enable
E657| 1 |EP8FIFOIRQ Endpoint 8 slave FIFO Flag In- 0 0 0 0 0 PF EF FF 00000000f RW
see Section 15.14 |terrupt Request
E658 1 |[IBNIE IN-BULK-NAK Interrupt Enable 0 0 EP8 EP6 EP4 EP2 EP1 EPO 00000000 RW
E659| 1 |[IBNIRQ IN-BULK-NAK interrupt Re- 0 0 EP8 EP6 EP4 EP2 EP1 EPO 00000000 RW [1=clearrequest, 0= no effec
quest
E65A| 1 [NAKIE Endpoint Ping-NAK / IBN Inter- EP8 EP6 EP4 EP2 EP1 EPO 0 IBN 00000000 RW [OUT endpoint was pinged
rupt Enable and NAK'd
E65B| 1 |NAKIRQ Endpoint Ping-NAK / IBN Inter- EP8 EP6 EP4 EP2 EP1 EPO 0 IBN 00000000f RW
rupt Request
E65C 1 |USBIE USB Int Enables 0 EPOACK HSGRANT URES SUSP SUTOK SOF SUDAV | 00000000 RW
E65D| 1 |USBIRQ USB Interrupt Requests 0 EPOACK HSGRANT URES SUSP SUTOK SOF SUDAV | 00000000 RW [1=clearrequest, 0= no effec
E65E 1 |EPIE Endpoint Interrupt Enables EP8 EP6 EP4 EP2 EP10OUT EP1IN EPOOUT EPOIN 00000000 RW
E65F| 1 |[EPIRQ Endpoint Interrupt Requests EP8 EP6 EP4 EP2 EP1OUT EP1IN EPOOUT EPOIN 00000000 RW [1=clearrequest, 0= no effec

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 26

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E660(1 |GPIFIE GPIF Interrupt Enable 0 0 0 0 0 0 GPIFWF | GPIFDONE | 00000000 RW |WF--8051 "hook" in wave-
see Section 15.14 form, DONE-returned to
IDLE state
E661 1 |GPIFIRQ GPIF Interrupt Request 0 0 0 0 0 0 GPIFWF GPIFDONE | 00000000 RW [Write "1" to clear
see Section 15.14
E662(1 |USBERRIE USB Error Interrupt Enables ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT | 00000000 RW [ISO endpoint error: PID se-
quence error or dropped
packet (no available buffer)
E663 1 |USBERRIRQ USB Error Interrupt Requests ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT | 00000000 RW
E664| 1 |ERRCNTLIM USB Error counter and limit EC3 EC2 EC1 ECO LIMIT3 LIMIT2 LIMIT1 LIMITO xxxx0100 | rrrrbbbb |Default limit count is 4
E665 1 |CLRERRCNT Clear Error Counter EC3:0 X X X X X X X X XXXXXXXX W
E666(1 |INT2IVEC Interrupt 2 (USB) Autovector 0 12v4 12v3 12v2 12v1 12V0 0 0 00000000 R
E667 1 |INT4IVEC Interrupt 4 (slave FIFO & GPIF) 1 0 14V3 14v2 14v1 14vV0 0 0 10000000 R
Autovector
E668(1 |INTSETUP Interrupt 2&4 Setup 0 0 0 0 AV2EN 0 INT4SRC AV4EN | 00000000 RW |INT4IN=0: INT4 from pin; 1:
INT4 from FIFO/GPIF inter-
rupts
E669| 7 [reserved
INPUT / OUTPUT
E670 1 |PORTACFG 1/0 PORTA Alternate Configura{ FLAGD SLCS 0 0 0 0 INT1 INTO 00000000 RW
tion
E671| 1 |PORTCCFG 1/0 PORTC Alternate Configu- GPIFA7 GPIFAG GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFAL GPIFAO 00000000 RW
ration
E672 1 |PORTECFG 1/0 PORTE Alternate Configura{ GPIFA8 T2EX INT6 RXD10OUT | RXDOOUT T20UT T10UT TOOUT 00000000 RW [GSTATE bit =1 overrides bits
tion 2:0.
E673| 5 |reserved
E678 1 [12Cs 12C-Compatible Bus START STOP LASTRD ID1 IDO BERR ACK DONE 000xx000| bbbrrrrr
Control & Status
E679| 1 [I2DAT 12C-Compatible Bus d7 dé d5 d4 d3 d2 d1 do XXXXXXXX RW
Data
E67A| 1 |[I2CTL 12C-Compatible Bus 0 0 0 0 0 0 STOPIE 400KHZ | 00000000 RW
Control
E67B| 1 |XAUTODAT1 Autoptrl MOVX access, when D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW |AUTOPTRSETUP bit
APTREN=1 APTREN=1: off-chip access
E67C| 1 |XAUTODAT2 Autoptr2 MOVX access, when D7 D6 D5 D4 D3 D2 D1 DO x00000x | RW |pSF this . code-space
APTREN=1 ole at this location
AUTOPTRSETUP bit
APTREN=0: on-chip access
use duplicate SFR @ 9C, no
code-space hole
UDMA CRC
E67D| 1 [UDMACRCH UDMA CRC MSB CRC15 CRC14 CRC13 CRC12 CRC11 CRC10 CRC9 CRC8 01001010 RW
see Section 15.14
E67E 1 |UDMACRCL UDMA CRC LSB CRC7 CRC6 CRC5 CRC4 CRC3 CRC2 CRC1 CRCO 10111010 RW
see Section 15.14
E67F| 1 |UDMACRC- UDMA CRC Qualifier QENABLE 0 0 0 QSTATE | QSIGNAL2 | QSIGNAL1 [QSIGNALO [00000000(brrrbbbb
QUALIFIER
USB CONTROL
E680(1 |USBCS USB Control & Status HSM 0 0 0 DISCON | NOSYNSOF [RENUM | SIGRSUME | x0000000| rrrrbbbb
E681| 1 |SUSPEND Put chip into suspend X X X X X X X X XXXXXXXX W Write OxFF to suspend

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 27

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E682| 1 |WAKEUPCS Wakeup Control & Status wu2 wWu WU2POL WUPOL 0 DPEN WUZ2EN WUEN xx000101 | bbbbrbbb!
E683 1 |TOGCTL Toggle Control Q S R 10 EP3 EP2 EP1 EPO 00000000 | rbbbbbbb!
E684(1 |USBFRAMEH USB Frame count H 0 0 0 0 0 FC10 FC9 FC8 00000xxx R
E685 1 |USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FCO XXXXXXXX R
E686| 1 |MICROFRAME Microframe count, 0-7 0 0 0 0 0 MF2 MF1 MFO 00000xxx R
E687 1 |FNADDR USB Function address 0 FA6 FA5 FA4 FA3 FA2 FAl FAO 00000000 R
E688(2 |reserved
ENDPOINTS
E68A| 1 |EPOBCH Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8) XXXXXXXX RW [Eventhoughthe EPO bufferis
- only 64 bytes, the EPO byte
E68B| 1 |[EPOBCL Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BCO XXXXXXXX RW count is expanded
E68C| 1 |reserved to 16-bits to allow using the
E68D| 1 |EPLOUTBC Endpoint 1 OUT Byte Count 0 BC6 BC5 BC4 BC3 BC2 BCL BCO | Owoooook | RW__[mutopts ‘gf"[‘,gg[‘smm length,
E68E| 1 [reserved dictated length (from Setup
- Data Packet and number of
E68F| 1 |EP1INBC Endpoint 1 IN Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BCO OXXXXXXX RW requested bytes).
The byte count bits in paren-|
theses apply only when SD-
PAUTO =0
E690(1 |EP2BCH Endpoint 2 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW |EP2,6 can be 512 or 1024
see Section 15.14 EP4,8 are 512 only
E691 1 |EP2BCL Endpoint 2 Byte Count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO XXXXXXXX RW
see Section 15.14
E692(2 |reserved
E694 1 |EP4BCH Endpoint 4 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
see Section 15.14
E695| 1 |EP4BCL Endpoint 4 Byte Count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO XXXXXXXX RW
see Section 15.14
E696| 2 [reserved
E698(1 |EP6BCH Endpoint 6 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
see Section 15.14
E699 1 |EP6BCL Endpoint 6 Byte Count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO XXXXXXXX RW
see Section 15.14
E69A| 2 |[reserved
E69C 1 |EP8BCH Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
see Section 15.14
E69D| 1 |EP8BCL Endpoint 8 Byte Count L BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO XXXXXXXX RW
see Section 15.14
E69E| 2 |reserved
E6A0| 1 |EPOCS Endpoint 0 Control and Status HSNAK 0 0 0 0 0 BUSY STALL 10000000| bbbbbbrb!
E6AL 1 |EP1OUTCS Endpoint 1 OUT Control and 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb!
Status
E6A2| 1 |EP1INCS Endpoint 1 IN Control and Sta- 0 0 0 0 0 0 BUSY STALL 00000000 | bbbbbbrb
tus

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 28

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E6A3| 1 |EP2CS Endpoint 2 Control and Status 0 NPAK2 NPAK1 NPAKO FULL EMPTY 0 STALL 00101000| rrrrrirb - [NPAK2:0=number of packets
- in the FIFO, 0-4.
E6A4| 1 |EP4ACS Endpoint 4 Control and Status 0 0 NPAK1 NPAKO FULL EMPTY 0 STALL 00101000| rrrrrrrb NPAKZL:0=number of packets
E6A5| 1 |EP6CS Endpoint 6 Control and Status 0 NPAK2 NPAK1 NPAKO FULL EMPTY 0 STALL 00000100| rrrrrrrh - [in the FIFO, 0-2"
E6AG| 1 |EPSCS Endpoint 8 Control and Status 0 0 NPAKL NPAKO FULL EMPTY 0 STALL | 00000100| rrrrrh |O1: Packets received from
P USB. IN: Packets loaded and
armed.
FULL/EMPTY status bits du-
plicated in SFR space,
EP2468STAT
E6A7 1 |EP2FIFOFLGS Endpoint 2 slave FIFO Flags 0 0 0 0 0 PF EF FF 00000010 R Not affected by FIFOPINPO-|
- LAR bits.
E6A8| 1 |EP4FIFOFLGS Endpoint 4 slave FIFO Flags 0 0 0 0 0 PF EF FF 00000010 R duplicated in SFR space,
E6A9 1 |EP6FIFOFLGS Endpoint 6 slave FIFO Flags 0 0 0 0 0 PF EF FF 00000110 R EP24FIFOFLGS and
E6AA| 1 |EPSFIFOFLGS |Endpoint 8 slave FIFO Flags 0 0 0 0 0 PF EF FF |oooooi0| R |°FOS8FIFOFLGS
E6AB| 1 |EP2FIFOBCH Endpoint 2 slave FIFO total byte 0 0 0 BC12 BC11 BC10 BC9 BC8 00000000 R
count H OUT: full byte count; IN: bytes
E6AC| 1 |EP2FIFOBCL Endpoint 2 slave FIFO total byte| BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO |00000000] R |myrent z’gg‘ge‘
count L EP$ max 1024
E6AD| 1 |EP4FIFOBCH Endpoint 4 slave FIFO total byte 0 0 0 0 0 BC10 BC9 BC8 00000000 R EP6 max 2048
count H EP* max 1024
E6AE| 1 |[EP4FIFOBCL Endpoint 4 slave FIFO total byte BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO 00000000 R
count L
E6AF| 1 |EP6FIFOBCH Endpoint 6 slave FIFO total byte 0 0 0 0 BC11 BC10 BC9 BC8 00000000 R
count H
E6BO| 1 |EP6FIFOBCL Endpoint 6 slave FIFO total byte BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO 00000000 R
count L
E6B1 1 |EPSFIFOBCH Endpoint 8 slave FIFO total byte 0 0 0 0 0 BC10 BC9 BC8 00000000 R
count H
E6B2|(1 |EP8FIFOBCL Endpoint 8 slave FIFO total byte BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO 00000000 R
count L
E6B3| 1 |[SUDPTRH Setup Data Pointer high ad- A15 Al4 A13 Al12 A1l Al10 A9 A8 XXXXXXXX RW
dress byte
E6B4| 1 |SUDPTRL Setup Data Pointer low address A7 A6 A5 A4 A3 A2 Al 0 xxxxxxx0 | bbbbbbbr|Must be word-aligned (i.e.,
byte must pointto even-numbered
addresses)
E6B5(1 |[SUDPTRCTL Setup Data Pointer Auto Mode 0 0 0 0 0 0 0 SDPAUTO | 00000001 RW [Clear b0 to supply SUDPTR
length (override USB length)
2 [reserved
E6B8| 8 [SETUPBUF 8 bytes of SETUP data D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX R
SETUPDAT[0] = D7: Data Transfer Direction;
bmRequestType O=host-to-device, 1=device-
to-host
D6...5 Type; O=standard,
1=class, 2=vendor, 3=re-
served
D4...0 Recipient; O=device,
1=interface, 2=endpoint,
3=other, 4...31=reserved
SETUPDAT[1] = bmRequest specific request
SETUPDAT[2:3] = wValue word-sized field that varies
according to request

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 29

EZ-USB FX2 Registers & Buffers

o
=/ e

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
SETUPDAT[4:5] = windex word-sized field that varies
according to request; typ.
used to pass an index or off-
set
SETUPDAT[6:7] = wLength number of bytes to transfer if
there is a data stage
GPIF
E6CO| 1 |[GPIFWFSELECT |Waveform Selector SINGLEWR1|SINGLEWRO| SINGLERD1| SINGLERDO| FIFOWR1 | FIFOWRO FIFORD1 FIFORDO |11100100| RW [Select waveform
E6C1 1 |GPIFIDLECS GPIF Done, GPIF IDLE drive DONE 0 0 0 0 0 0 IDLEDRV | 10000000 RW [DONE=1:GPIFdone (IRQ4).
mode IDLEDRV=1: drive bus, 0:TY
r DONE duplicated in SFR
E6C2| 1 |[GPIFIDLECTL Inactive Bus, CTL states 0 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTLO 11111111 RW space, GPIFTRIG bit 7
E6C3| 1 |[GPIFCTLCFG CTL Drive Type TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTLO 00000000 RW |0=CMOS, 1=open drn.
E6C4| 1 |GPIFADRH GPIF Address H 0 0 0 0 0 0 0 GPIFA8 | 00000000 RW [GPIFADRH/L active immedi-|
see Section 15.14 ately when written to
E6C5| 1 |[GPIFADRL GPIF Address L GPIFA7 GPIFAG GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFAL GPIFAO 00000000 RW
see Section 15.14
FLOWSTATE
E6C6| 1 |FLOWSTATE Flowstate Enable and Selector FSE 0 0 0 0 FS2 FS1 FSO 00000000(brrrrbbb
E6C7 1 |FLOWLOGIC Flowstate Logic LFUNC1 LFUNCO TERMA2 TERMA1 TERMAO TERMB2 TERMB1 TERMBO | 00000000 RW
E6C8| 1 [FLOWEQOCTL CTL-Pin States in Flowstate CTLOE3 CTLOE2 CTLOEY/ CTLOEO/ CTL3 CTL2 CTL1 CTLO 00000000 RW
(when Logic = 0) CTL5 CTL4
E6C9 1 |FLOWEQI1CTL CTL-Pin States in Flowstate CTLOE3 CTLOE2 CTLOEY/ CTLOEO/ CTL3 CTL2 CTL1 CTLO 00000000 RW
(when Logic = 1) CTL5 CTL4
E6CA| 1 |FLOWHOLDOFF [Holdoff Configuration HOPERIOD3|HOPERIOD2|HOPERIOD1|HOPERIODO| HOSTATE HOCTL2 HOCTL1 HOCTLO |00010010| RW
E6CB| 1 |FLOWSTB Flowstate Strobe Configuration SLAVE RDYASYNC| CTLTOGL SUSTAIN 0 MSTB2 MSTB1 MSTBO 00100000 RW
E6CC| 1 |FLOWSTBEDGE |Flowstate Rising/Falling Edge 0 0 0 0 0 0 FALLING RISING | 00000001(rrrrrrbb
Configuration
E6CD| 1 |FLOWSTBPERIOD |Master-Strobe Half-Period D7 D6 D5 D4 D3 D2 D1 DO 00000010 RW [In units of IFCLK/2. Must be
>=2
E6CE| 1 |GPIFTCB3 GPIF Transaction Count Byte3 TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24 00000000{ RW |Reading these registers give
E6CF| 1 |GPIFTCB2 GPIF Transaction Count Byte2 | TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16 |00000000] RW %%Lme live Transaction
E6DO| 1 |[GPIFTCB1 GPIF Transaction Count Bytel TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000 RW |Default=1
E6D1 1 |GPIFTCBO GPIF Transaction Count ByteO TC7 TC6 TC5 TC4 TC3 TC2 TC1 TCO 00000001 RW
2 |reserved 00000000 RW
reserved
reserved
E6D2| 1 |EP2GPIFFLGSEL |Endpoint 2 GPIF Flag select 0 0 0 0 0 0 FS1 FSO 00000000 RW [00: Programmable flag;
see Section 15.14 01: Empty, 10: Full,
11: reserved
E6D3| 1 |EP2GPIFPFSTOP [Endpoint 2 GPIF stop transac- 0 0 0 0 0 0 0 FIFO2FLAG [00000000 RW [1=override TC value, stop on
tion on prog. flag FIFO Prog. Flag.
E6D4| 1 |EP2GPIFTRIG Endpoint 2 GPIF Trigger X X X X X X X X XXXXXXXX W Start GPIF transactions, du-
see Section 15.14 plicated in SFR - GPIFTRIG
3 [reserved
reserved
reserved

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 30

EZ-USB FX2 Registers & Buffers

o
=/ e

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
E6DA| 1 |EP4GPIFFLGSEL |Endpoint 4 GPIF Flag select 0 0 0 0 0 0 FS1 FSO 00000000| RW [00: Programmable-Level;
see Section 15.14 01: Empty, 10: Full,
11: reserved
E6DB| 1 |EP4GPIFPFSTOP |Endpoint 4 GPIF stop transac- 0 0 0 0 0 0 0 FIFO4FLAG | 00000000 RW
tion on GPIF Flag
E6DC| 1 |EP4GPIFTRIG Endpoint 4 GPIF Trigger X X X X X X X X XXXXXXXX w Start GPIF transactions, du-
see Section 15.14 plicated in SFR - GPIFTRIG
3 |reserved
reserved
reserved
E6E2| 1 |EP6GPIFFLGSEL |Endpoint 6 GPIF Flag select 0 0 0 0 0 0 FS1 FSO 00000000| RW [00: Programmable flag;
see Section 15.14 01: Empty, 10: Full,
11: reserved (PF)
E6E3 1 |EP6GPIFPFSTOP |Endpoint 6 GPIF stop transac- 0 0 0 0 0 0 0 FIFO6FLAG | 00000000 RW
tion on prog. flag
E6E4| 1 |EP6GPIFTRIG Endpoint 6 GPIF Trigger X X X X X X X X XXXXXXXX w Start GPIF transactions, du-
see Section 15.14 plicated in SFR - GPIFTRIG
3 |reserved
reserved
reserved
E6EA| 1 |EP8GPIFFLGSEL |Endpoint 8 GPIF Flag select 0 0 0 0 0 0 FS1 FSO 00000000| RW [00: Programmable flag;
see Section 15.14 01: Empty, 10: Full,
11: reserved (PF)
E6EB| 1 |EP8GPIFPFSTOP |Endpoint 8 GPIF stop transac- 0 0 0 0 0 0 0 FIFO8FLAG | 00000000 RW
tion on prog. flag
E6EC| 1 |EP8GPIFTRIG Endpoint 8 GPIF Trigger X X X X X X X X XXXXXXXX w Start GPIF transactions, du-
see Section 15.14 plicated in SFR - GPIFTRIG
3 |reserved
- — —
E6FO[1 [XGPIFSGLDATH |GPIF Data H (16-bit mode only) D15 D14 D13 D12 D11 D10 D9 D8 XXXXXXXX RW aup |catea in SFR space,
SGLDATH / SGLDATLX /
SGLDATLNOX
E6F1| 1 |[XGPIFSGLDATLX [Read/Write GPIF Data L & trig- D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW [8051read or write triggers
ger transaction GPIF transaction
E6F2| 1 |XGPIFSGLDATL- |Read GPIF DatalL, no transac- D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX R 8051 reads data w/o GPIF
NOX tion trigger transaction trig. (e.g. last
byte)
E6F3 1 |GPIFREADYCFG |Internal RDY,Sync/Async, RDY INTRDY SAS TCXRDY5 0 0 0 0 0 00000000| bbbrrrrr [INTRDY is 8051 'ready’, like
pin states RDYn pins. RDYn indicate
pin states
SAS=1: synchronous,
0:asynchronous (2-flops)
RDYn inputs.
E6F4| 1 |GPIFREADYSTAT [GPIF Ready Status 0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDYO OOXXXXXX R RDYn indicate pin states
E6F5| 1 |GPIFABORT Abort GPIF Waveforms X X X X X X X X XXXXXXXX w Go To GPIF IDLE state. Data
is don't care.
E6F6| 2 |reserved
ENDPOINT BUFFERS
E740| 64 |EPOBUF EPO-IN/-OUT buffer D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW
E780(64 |EP10UTBUF EP1-OUT buffer D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW
E7CO| 64 |EP1INBUF EP1-IN buffer D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 31

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
2048 |reserved RW
FO000 | 1024 |EP2FIFOBUF 512/1024-byte EP 2 / slave D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW [For 512 use only 0xF000-
FIFO buffer (IN or OUT) OxF1FF
F400 | 512 |EP4FIFOBUF 512 byte EP 4/ slave FIFO buff D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW
er (IN or OUT)
F600 | 512 |reserved
F800 | 1024 |EP6FIFOBUF 512/1024-byte EP 6 / slave D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW [For 512 use only 0xF800-
FIFO buffer (IN or OUT) OXF9FF
FCO00| 512 |[EPSFIFOBUF 512 byte EP 8/ slave FIFO buff D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW
er (IN or OUT)
FEOO| 512 |reserved
XXXX 12C Compatible Configuration Byte 0 DISCON 0 0 0 0 0 400KHZ | XXXXXXXX n/a
00000000 DISCON=copied into DIS-
If no CON bit (USBCS.3) for pow-|
EPROM er-on USB connect state
detected 400KHZ=1 for 400 KHz 12C
compatible bus operation
NOTE: if no EEPROM is con
nected all bits default to reg-
ister default values.
Special Function Registers (SFRs)
80 1 [10A® Port A (bit addressable) D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX | RW
81 1 |SP Stack Pointer D7 D6 D5 D4 D3 D2 D1 DO 00000111 RW
82 1 |DPLO Data Pointer O L A7 A6 A5 Ad A3 A2 Al A0 00000000 RW
83 1 |DPHO Data Pointer O H Al5 Al4 Al13 Al12 All Al10 A9 A8 00000000 RW
84 1 [ppL1® Data Pointer 1 L A7 A6 A5 A4 A3 A2 AL A0 00000000] RW
85 1 [DPH1I®D Data Pointer 1 H Al5 Al4 Al13 Al12 All Al10 A9 A8 00000000 RW
86 1 [pPs® Data Pointer 0/1 select 0 0 0 0 0 0 0 SEL 00000000] RW
87 1 |PCON Power Control SMODO X 1 1 GF1 GFO STOP IDLE 00110000 RW
88 1 [TCON Timer/Counter Control (bit ad- TF1 TR1 TFO TRO IE1 IT1 IEO ITO 00000000 RW
dressable)
89 1 |TMOD Timer/Counter Mode Control GATE CT M1 MO GATE CT M1 MO 00000000 RW
8A 1 |TLO Timer O reload L D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
8B 1 |TL1 Timer 1 reload L D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
8C 1 |THO Timer O reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
8D 1 |TH1 Timer 1 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
8E 1 [ckcoN® Clock Control X X T2M TiM TOM MD2 MD1 MDO 00000001 RW [MOVX = 3instr. cycles (de-
fault)
8F 1 |reserved
90 1 [1oB@ Port B (bit addressable) D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX | RW
91 1 [ExiF@ External Interrupt Flag(s) IE5 IE4 [2CINT USBNT 1 0 0 0 00001000] RW

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 32

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
92 1 [MPAGED Upper Addr Byte of MOVX using Al5 Al4 Al3 Al2 All Al10 A9 A8 00000000| RW [used with the indirect ad-
RO/ @R1 dressing instuction(s), ie.
MOVX @RO,A _where
MPAGE = upper addr byte
and RO contains lower addr
byte _an app. example
would be to copy EP1 out/in
data to a buffer
93 5 [reserved
98 1 [SCONO Serial Port 0 Control (bitaddres]{ SM0_0 SM1_0 SM2_0 REN_O TB8_0 RB8_0 T_O RI_O |00000000] RwW
sable)
99 1 |SBUFO Serial Port 0 Data Buffer D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
9A 1 [AUTOPTRH1®D Autopointer 1 Address H Al5 Al4 Al13 Al12 All Al10 A9 A8 00000000 RW
9B 1 |[AUTOPTRL1I®D Autopointer 1 Address L A7 A6 A5 Ad A3 A2 Al A0 00000000 RW
9C 1 |reserved
9D 1 [AUTOPTRH2(D Autopointer 2 Address H Al5 Al4 Al13 Al12 All A10 A9 A8 00000000 RW
9E 1 [AUTOPTRL2M Autopointer 2 Address L A7 A6 A5 A4 A3 A2 Al A0 00000000 RW
9F 1 |reserved
A0 1 [1loc® Port C (bit addressable) D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX | RW
Al 1 [INT2CLRD Interrupt 2 clear X X X X X X X X XXXXXXXX w
A2 1 [INT4CLRD Interrupt 4 clear X X X X X X X X XXXXXXXX w
A3 5 [reserved
A8 1 |IE Interrupt Enable (bit address- EA ES1 ET2 ESO ET1 EX1 ETO EX0 00000000 RW
able)
A9 1 |reserved
AA 1 [EP2468STAT®D Endpoint 2,4,6,8 status flags EP8SF EPSE EP6F EP6E EP4F EP4E EP2F EP2E 01011010 R Check Empty/Full status of
EP 2,4,6,8 using MOV
AB 1 |EP24FIFOFLGS™ Endpoint 2,4 slave FIFO status 0 EP4PF EP4EF EP4FF 0 EP2PF EP2EF EP2FF 00100010 R Check Prg/Empty/Full status
flags of EP 2,4 slave FIFO using
MOV instr.
AC 1 |EP68FIFOFLGS™ Endpoint 6,8 slave FIFO status 0 EP8PF EP8SEF EP8FF 0 EP6PF EP6EF EP6FF 01100110 R Check Prg/Empty/Full status
flags of EP 6,8 slave FIFO using
MOV instr.
AD 2 [reserved
AF 1 [AUTOPTRSETUP™M Autopointer 1&2 Setup 0 0 0 0 0 APTR2INC | APTR1INC | APTREN (00000110 RW [APTRxINC=1 inc autopoint-
er(s); APTRXINC=0 freeze
autopointer(s)
APTREN=1 RD/WR stobes
asserted when using MOVX
version
BO 1 [1lop® Port D (bit addressable) D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX | RW
B1 1 [I0ED Port E (NOT bit addressable) D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX | RW
B2 [1 [OoEAD Port A Output Enable D7 D6 D5 D4 D3 D2 D1 DO 00000000] RW
B3 [1 [oEBD Port B Output Enable D7 D6 D5 D4 D3 D2 D1 DO 00000000] RW
B4 | 1 [oECT Port C Output Enable D7 D6 D5 D4 D3 D2 D1 DO 00000000] RW
B5 [1 [oEDW Port D Output Enable D7 D6 D5 D4 D3 D2 D1 DO 00000000] RW
B6 | 1 |OEED Port E Output Enable D7 D6 D5 D4 D3 D2 D1 DO 00000000] RW
B7 1 |reserved

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 33

EZ-USB FX2 Registers & Buffers

o
=/ s

Hex | Size |Name Description b7 b6 b5 b4 b3 b2 bl b0 Default | Access Notes
B8 1 |IP Interrupt Priority (bit address- 1 PS1 PT2 PSO PT1 PX1 PTO PX0 10000000 RW
able)
B9 1 [reserved
BA 1 |EPO1STAT(D Endpoint 0&1 Status 0 0 0 0 0 EP1INBSY |EP1OUTBSY| EPOBSY |00000000 R Check EPO & EP1 status us-
ing MOV instr.
BB 1 |GPIFTRIGD Endpoint 2,4,6,8 GPIF slave DONE 0 0 0 0 RW EP1 EPO 10000xxx | brrrrbbb [RW=1 reads, RW=0 writes;
see Section 15.14 |FIFO Trigger EP[1:0] = 00 EP2, = 01 EP4,
=10 EP6, = 11 EP8
BC 1 |reserved
BD 1 |GPIFSGLDATH®D [GPIF Data H (16-bit mode only D15 D14 D13 D12 D11 D10 D9 D8 XXXXXXXX RW [efficient version(s) of their
MOVX buddies
BE 1 |GPIFSGLDATLXD |GPIF Data L w/ Trigger D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX RW
BF 1 |GPIFSGLDATLNOX|GPIF Data L w/ No Trigger D7 D6 D5 D4 D3 D2 D1 DO XXXXXXXX R note READ only, this should
@ help you decide when to ap-
propriately use it
Co 1 [scoNi® Serial Port 1 Control (bitaddresq{ SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 T_1 RI_1 00000000f RW
sable)
C1l 1 [sBUF1® Serial Port 1 Data Buffer D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
Cc2 6 [reserved
C8 1 |T2CON Timer/Counter 2 Control (bit ad TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000 RW
dressable)
Cc9 1 |reserved
CA 1 |RCAP2L Capture for Timer 2, auto-re- D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
load, up-counter
CB 1 |RCAP2H Capture for Timer 2, auto-re- D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
load, up-counter
cC 1 |TL2 Timer 2 reload L D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
CD 1 |TH2 Timer 2 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
CE 2 |reserved
DO 1 |PSW Program Status Word (bit ad- CcYy AC FO RS1 RSO ov F1 P 00000000 RW
dressable)
D1 7 |reserved
D8 1 |EICON® External Interrupt Control SMOD1 1 ERESI RESI INT6 0 0 0 01000000 RW |RESI - reflects D+/WU /
WU2 src while SUSPEND
(PCON.1), clocks off
D9 7 |reserved
EO 1 |ACC Accumulator (bit addressable) D7 D6 D5 D4 D3 D2 D1 DO 00000000 RW
El 7 |reserved
E8 1 [ele® External Interrupt Enable(s) 1 1 1 EX6 EX5 EX4 EIRC EUSB 11100000 RW
E9 7 |reserved
FO 1 |B B (bit addressable) D7 D6 D5 D4 D3 D2 D1 DO 00000000f RW
F1 7 |reserved
F8 1 [eP@ External Interrupt Priority Con- 1 1 1 PX6 PX5 PX4 PI2C PUSB 11100000 RW
trol
F9 7 |reserved
@ SFRs not part of the standard 8051 architecture.

EZ-USB FX2 Technical Reference Manual v2.1

Appendix C - 34

	Title
	Cypress Disclaimer
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introducing EZ-USB FX2
	1.1 Introduction
	1.2 An Introduction to USB
	1.3 The USB Specification
	1.4 Host Is Master
	1.5 USB Direction
	1.6 Tokens and PIDs
	1.6.1 Receiving Data from the Host
	1.6.2 Sending Data to the Host

	1.7 USB Frames
	1.8 USB Transfer Types
	1.8.1 Bulk Transfers
	1.8.2 Interrupt Transfers
	1.8.3 Isochronous Transfers
	1.8.4 Control Transfers

	1.9 Enumeration
	1.9.1 Full-Speed / High-Speed Detection

	1.10 The Serial Interface Engine (SIE)
	1.11 ReNumeration™
	1.12 EZ-USB FX2 Architecture
	1.13 FX2 Feature Summary
	1.14 FX2 Integrated Microprocessor
	1.15 FX2 Block Diagram
	1.16 Packages
	1.16.1 56-Pin Package
	1.16.2 100-Pin Package
	1.16.3 128-Pin Package
	1.16.4 Signals Available in the Three Packages

	1.17 Package Diagrams
	1.18 FX2 Endpoint Buffers
	1.19 External FIFO Interface
	1.20 EZ-USB FX2 Product Family

	Chapter 2 Endpoint Zero
	2.1 Introduction
	2.2 Control Endpoint EP0
	2.3 USB Requests
	2.3.1 Get Status
	2.3.2 Set Feature
	2.3.3 Clear Feature
	2.3.4 Get Descriptor
	2.3.4.1 Get Descriptor-Device
	2.3.4.2 Get Descriptor-Device Qualifier
	2.3.4.3 Get Descriptor-Configuration
	2.3.4.4 Get Descriptor-String
	2.3.4.5 Get Descriptor-Other Speed Configuration

	2.3.5 Set Descriptor
	2.3.5.1 Set Configuration

	2.3.6 Get Configuration
	2.3.7 Set Interface
	2.3.8 Get Interface
	2.3.9 Set Address
	2.3.10 Sync Frame
	2.3.11 Firmware Load

	Chapter 3 Enumeration and ReNumeration™
	3.1 Introduction
	3.2 FX2 Startup Modes
	3.3 The Default USB Device
	3.4 EEPROM Boot-load Data Formats
	3.4.1 No EEPROM or Invalid EEPROM
	3.4.2 Serial EEPROM Present, First Byte is 0xC0
	3.4.3 Serial EEPROM Present, First Byte is 0xC2

	3.5 EEPROM Configuration Byte
	3.6 The RENUM Bit
	3.7 FX2 Response to Device Requests (RENUM=0)
	3.8 FX2 Vendor Request for Firmware Load
	3.9 How the Firmware ReNumerates
	3.10 Multiple ReNumerations™

	Chapter 4 Interrupts
	4.1 Introduction
	4.2 SFRs
	4.2.1 803x/805x Compatibility

	4.3 Interrupt Processing
	4.3.1 Interrupt Masking
	4.3.1.1 Interrupt Priorities

	4.3.2 Interrupt Sampling
	4.3.3 Interrupt Latency

	4.4 USB-Specific Interrupts
	4.4.1 Resume Interrupt
	4.4.2 USB Interrupts
	4.4.2.1 SUTOK, SUDAV Interrupts
	4.4.2.2 SOF Interrupt
	4.4.2.3 Suspend Interrupt
	4.4.2.4 USB RESET Interrupt
	4.4.2.5 HISPEED Interrupt
	4.4.2.6 EP0ACK Interrupt
	4.4.2.7 Endpoint Interrupts
	4.4.2.8 In-Bulk-NAK (IBN) Interrupt
	4.4.2.9 EPxPING Interrupt
	4.4.2.10 ERRLIMIT Interrupt
	4.4.2.11 EPxISOERR Interrupt

	4.5 USB-Interrupt Autovectors
	4.5.1 USB Autovector Coding

	4.6 I·C-Compatible Bus Interrupt
	4.7 FIFO/GPIF Interrupt (INT4)
	4.8 FIFO/GPIF-Interrupt Autovectors
	4.8.1 FIFO/GPIF Autovector Coding

	Chapter 5 Memory
	5.1 Introduction
	5.2 Internal Data RAM
	5.2.1 The Lower 128
	5.2.2 The Upper 128
	5.2.3 SFR (Special Function Register) Space

	5.3 External Program Memory and External Data Memory
	5.3.1 56- and 100-pin FX2
	5.3.2 128-pin FX2

	5.4 FX2 Memory Maps
	5.5 “Von-Neumannizing” Off-Chip Program and Data Memory
	5.6 On-Chip Data Memory at 0xE000-0xFFFF

	Chapter 6 Power Management
	6.1 Introduction
	6.2 USB Suspend
	6.2.1 SUSPEND Register

	6.3 Wakeup/Resume
	6.3.1 Wakeup Interrupt

	6.4 USB Resume (Remote Wakeup)
	6.4.1 WU2 Pin

	Chapter 7 Resets
	7.1 Introduction
	7.2 Power-On Reset (POR)
	7.3 Releasing the CPU Reset
	7.3.1 RAM Download
	7.3.2 EEPROM Load
	7.3.3 External ROM

	7.4 CPU Reset Effects
	7.5 USB Bus Reset
	7.6 FX2 Disconnect
	7.7 Reset Summary

	Chapter 8 Access to Endpoint Buffers
	8.1 Introduction
	8.2 FX2 Large and Small Endpoints
	8.3 High-Speed and Full-Speed Differences
	8.4 How the CPU Configures the Endpoints
	8.5 CPU Access to FX2 Endpoint Data
	8.6 CPU Control of FX2 Endpoints
	8.6.1 Registers That Control EP0, EP1IN, and EP1OUT
	8.6.1.1 EP0CS
	8.6.1.2 EP0BCH and EP0BCL
	8.6.1.3 USBIE, USBIRQ
	8.6.1.4 EP01STAT
	8.6.1.5 EP1OUTCS
	8.6.1.6 EP1OUTBC
	8.6.1.7 EP1INCS
	8.6.1.8 EP1INBC

	8.6.2 Registers That Control EP2, EP4, EP6, EP8
	8.6.2.1 EP2468STAT
	8.6.2.2 EP2ISOINPKTS, EP4ISOINPKTS, EP6ISOINPKTS, EP8ISOINPKTS
	8.6.2.3 EP2CS, EP4CS, EP6CS, EP8CS
	8.6.2.4 EP2BCH:L, EP4BCH:L, EP6BCH:L, EP8BCH:L

	8.6.3 Registers That Control All Endpoints
	8.6.3.1 IBNIE, IBNIRQ, NAKIE, NAKIRQ
	8.6.3.2 EPIE, EPIRQ
	8.6.3.3 USBERRIE, USBERRIRQ, ERRCNTLIM, CLRERRCNT
	8.6.3.4 TOGCTL

	8.7 The Setup Data Pointer
	8.7.1 Transfer Length
	8.7.2 Accessible Memory Spaces

	8.8 Autopointers

	Chapter 9 Slave FIFOs
	9.1 Introduction
	9.2 Hardware
	9.2.1 Slave FIFO Pins
	9.2.2 FIFO Data Bus (FD)
	9.2.3 Interface Clock (IFCLK)
	9.2.4 FIFO Flag Pins (FLAGA, FLAGB, FLAGC, FLAGD)
	9.2.5 Control Pins (SLOE, SLRD, SLWR, PKTEND, FIFOADR[1:0])
	9.2.6 Slave FIFO Chip Select (SLCS)
	9.2.7 Implementing Synchronous Slave FIFO Writes
	9.2.8 Implementing Synchronous Slave FIFO Reads
	9.2.9 Implementing Asynchronous Slave FIFO Writes
	9.2.10 Implementing Asynchronous Slave FIFO Reads

	9.3 Firmware
	9.3.1 Firmware FIFO Access
	9.3.2 EPx Memories
	9.3.3 Slave FIFO Programmable-Level Flag (PF)
	9.3.4 Auto-In / Auto-Out Modes
	9.3.5 CPU Access to OUT Packets, AUTOOUT = 1
	9.3.6 CPU Access to OUT Packets, AUTOOUT = 0
	9.3.7 CPU Access to IN Packets, AUTOIN = 1
	9.3.8 Access to IN Packets, AUTOIN=0
	9.3.9 Auto-In / Auto-Out Initialization
	9.3.10 Auto-Mode Example: Synchronous FIFO IN Data Transfers
	9.3.11 Auto-Mode Example: Asynchronous FIFO IN Data Transfers

	9.4 Switching Between Manual-Out and Auto-Out

	Chapter 10 General Programmable Interface (GPIF)
	10.1 Introduction
	10.1.1 Typical GPIF Interface

	10.2 Hardware
	10.2.1 The External GPIF Interface
	10.2.2 Default GPIF Pins Configuration
	10.2.3 Six Control OUT Signals
	10.2.3.1 Control Output Modes

	10.2.4 Six Ready IN signals
	10.2.5 Nine GPIF Address OUT signals
	10.2.6 Three GSTATE OUT signals
	10.2.7 8/16-Bit Data Path, WORDWIDE = 1 (default) and WORDWIDE = 0
	10.2.8 Byte Order for 16-bit GPIF Transactions
	10.2.9 Interface Clock (IFCLK)
	10.2.10 Connecting GPIF Signal Pins to Hardware
	10.2.11 Example GPIF Hardware Interconnect

	10.3 Programming the GPIF Waveforms
	10.3.1 The GPIF Registers
	10.3.2 Programming GPIF Waveforms
	10.3.2.1 The GPIF IDLE State
	10.3.2.1.1 GPIF Data Bus During IDLE
	10.3.2.1.2 CTL Outputs During IDLE

	10.3.2.2 Defining States
	10.3.2.2.1 Non-Decision Point (NDP) States
	10.3.2.2.2 Decision Point (DP) States

	10.3.3 Re-Executing a Task Within a DP State
	10.3.4 State Instructions
	10.3.4.1 Structure of the Waveform Descriptors

	10.4 Firmware
	10.4.1 Single-Read Transactions
	10.4.2 Single-Write Transactions
	10.4.3 FIFO-Read and FIFO-Write Transactions
	10.4.3.1 Transaction Counter
	10.4.3.2 Reading the Transaction-Count Status in a DP State

	10.4.4 GPIF Flag Selection
	10.4.5 GPIF Flag Stop
	10.4.5.1 Performing a FIFO-Read Transaction

	10.4.6 Firmware Access to IN packet(s), (AUTOIN=1)
	10.4.7 Firmware Access to IN Packet(s), (AUTOIN = 0)
	10.4.7.1 Performing a FIFO-Write Transaction

	10.4.8 Firmware access to OUT packets, (AUTOOUT=1)
	10.4.9 Firmware access to OUT packets, (AUTOOUT = 0)
	10.4.10 Burst FIFO Transactions

	10.5 UDMA Interface

	Chapter 11 CPU Introduction
	11.1 Introduction
	11.2 8051 Enhancements
	11.3 Performance Overview
	11.4 Software Compatibility
	11.5 803x/805x Feature Comparison
	11.6 FX2/DS80C320 Differences
	11.6.1 Serial Ports
	11.6.2 Timer 2
	11.6.3 Timed Access Protection
	11.6.4 Watchdog Timer
	11.6.5 Power Fail Detection
	11.6.6 Port I/O
	11.6.7 Interrupts

	11.7 EZ-USB FX2 Register Interface
	11.8 EZ-USB FX2 Internal RAM
	11.9 I/O Ports
	11.10 Interrupts
	11.11 Power Control
	11.12 Special Function Registers (SFR)
	11.13 External Address/Data Buses
	11.14 Reset

	Chapter 12 Instruction Set
	12.1 Introduction
	12.1.1 Instruction Timing
	12.1.2 Stretch Memory Cycles (Wait States)
	12.1.3 Dual Data Pointers
	12.1.4 Special Function Registers

	Chapter 13 Input/Output
	13.1 Introduction
	13.2 I/O Ports
	13.3 I/O Port Alternate Functions
	13.3.1 Port A Alternate Functions
	13.3.2 Port B and Port D Alternate Functions
	13.3.3 Port C Alternate Functions
	13.3.4 Port E Alternate Functions

	13.4 I·C-Compatible Bus Controller
	13.4.1 Interfacing to I·C Peripherals
	13.4.2 Registers
	13.4.2.1 Control Bits
	13.4.2.2 Status Bits

	13.4.3 Sending Data
	13.4.4 Receiving Data

	13.5 EEPROM Boot Loader

	Chapter 14 Timers/Counters and Serial Interface
	14.1 Introduction
	14.2 Timers/Counters
	14.2.1 803x/805x Compatibility
	14.2.2 Timers 0 and 1
	14.2.2.1 Mode 0, 13-Bit Timer/Counter — Timer 0 and Timer 1
	14.2.2.2 Mode 1, 16-Bit Timer/Counter — Timer 0 and Timer 1
	14.2.2.3 Mode 2, 8-Bit Counter with Auto-Reload — Timer 0 and Timer 1
	14.2.2.4 Mode 3, Two 8-Bit Counters — Timer 0 Only

	14.2.3 Timer Rate Control
	14.2.4 Timer 2
	14.2.4.1 Timer 2 Mode Control

	14.2.5 Timer 2 — 16-Bit Timer/Counter Mode
	14.2.5.1 Timer 2 — 16-Bit Timer/Counter Mode with Capture

	14.2.6 Timer 2 — 16-Bit Timer/Counter Mode with Auto-Reload
	14.2.7 Timer 2 — Baud Rate Generator Mode

	14.3 Serial Interface
	14.3.1 803x/805x Compatibility
	14.3.2 High-Speed Baud Rate Generator
	14.3.3 Mode 0
	14.3.4 Mode 1
	14.3.4.1 Mode 1 Baud Rate
	14.3.4.2 Mode 1 Transmit

	14.3.5 Mode 1 Receive
	14.3.6 Mode 2
	14.3.6.1 Mode 2 Transmit
	14.3.6.2 Mode 2 Receive

	14.3.7 Mode 3

	Chapter 15 Registers
	15.1 Introduction
	15.1.1 Example Register Formats
	15.1.2 Other Conventions

	15.2 Special Function Registers (SFR)
	15.3 About SFRS
	15.4 GPIF Waveform Memories
	15.4.1 GPIF Waveform Descriptor Data

	15.5 General Configuration Registers
	15.5.1 CPU Control and Status
	15.5.2 Interface Configuration (Ports, GPIF, slave FIFOs)
	15.5.3 Slave FIFO FLAGA-FLAGD Pin Configuration
	15.5.4 FIFO Reset
	15.5.5 Breakpoint, Breakpoint Address High, Breakpoint Address Low
	15.5.6 230 Kbaud Clock (T0, T1, T2)
	15.5.7 Slave FIFO Interface Pins Polarity
	15.5.8 Chip Revision ID
	15.5.9 Chip Revision Control
	15.5.10 GPIF Hold Time

	15.6 Endpoint Configuration
	15.6.1 Endpoint 1-OUT/Endpoint 1-IN Configurations
	15.6.2 Endpoint 2, 4, 6 and 8 Configuration
	15.6.3 Endpoint 2, 4, 6 and 8/Slave FIFO Configuration
	15.6.4 Endpoint 2, 4, 6, 8 AUTOIN Packet Length (High/Low)
	15.6.5 Endpoint 2, 4, 6, 8 /Slave FIFO Programmable-Level Flag (High/Low)
	15.6.5.1 IN Endpoints
	15.6.5.2 OUT Endpoints

	15.6.6 Endpoint 2, 4, 6, 8 ISO IN Packets per Frame
	15.6.7 Force IN Packet End
	15.6.8 Force OUT Packet End

	15.7 Interrupts
	15.7.1 Endpoint 2, 4, 6, 8 Slave FIFO Flag Interrupt Enable/Request
	15.7.2 IN-BULK-NAK Interrupt Enable/Request
	15.7.3 Endpoint Ping-NAK/IBN Interrupt Enable/Request
	15.7.4 USB Interrupt Enable/Request
	15.7.5 Endpoint Interrupt Enable/Request
	15.7.6 GPIF Interrupt Enable/Request
	15.7.7 USB Error Interrupt Enable/Request
	15.7.8 USB Error Counter Limit
	15.7.9 Clear Error Count
	15.7.10 INT 2 (USB) Autovector
	15.7.11 INT 4 (slave FIFOs & GPIF) Autovector
	15.7.12 INT 2 and INT 4 Setup

	15.8 Input/Output Registers
	15.8.1 I/O PORTA Alternate Configuration
	15.8.2 I/O PORTC Alternate Configuration
	15.8.3 I/O PORTE Alternate Configuration
	15.8.4 I·C Compatible Bus Control and Status
	15.8.5 I·C-Compatible Bus Data
	15.8.6 I·C-Compatible Bus Control
	15.8.7 AUTOPOINTERs 1 and 2 MOVX access

	15.9 UDMA CRC Registers
	15.10 USB Control
	15.10.1 USB Control and Status
	15.10.2 Enter Suspend State
	15.10.3 Wakeup Control & Status
	15.10.4 Data Toggle Control
	15.10.5 USB Frame Count High
	15.10.6 USB Frame Count Low
	15.10.7 USB Microframe Count
	15.10.8 USB Function Address

	15.11 Endpoints
	15.11.1 Endpoint 0 (Byte Count High)
	15.11.2 Endpoint 0 Control and Status (Byte Count Low)
	15.11.3 Endpoint 1 OUT and IN Byte Count
	15.11.4 Endpoint 2 and 6 Byte Count High
	15.11.5 Endpoint 4 and 8 Byte Count High
	15.11.6 Endpoint 2, 4, 6, 8 Byte Count Low
	15.11.7 Endpoint 0 Control and Status
	15.11.8 Endpoint 1 OUT/IN Control and Status
	15.11.9 Endpoint 2 Control and Status
	15.11.10 Endpoint 4 Control and Status
	15.11.11 Endpoint 6 Control and Status
	15.11.12 Endpoint 8 Control and Status
	15.11.13 Endpoint 2 and 4 Slave FIFO Flags
	15.11.14 Endpoint 6 and 8 Slave FIFO Flags
	15.11.15 Endpoint 2 Slave FIFO Byte Count High
	15.11.16 Endpoint 6 Slave FIFO Total Byte Count High
	15.11.17 Endpoint 4 and 8 Slave FIFO Byte Count High
	15.11.18 Endpoint 2, 4, 6, 8 Slave FIFO Byte Count Low
	15.11.19 Setup Data Pointer High and Low Address
	15.11.20 Setup Data Pointer Auto
	15.11.21 Setup Data - 8 Bytes

	15.12 General Programmable Interface (GPIF)
	15.12.1 GPIF Waveform Selector
	15.12.2 GPIF Done and Idle Drive Mode
	15.12.3 CTL Outputs
	15.12.4 GPIF Address High
	15.12.5 GPIF Address Low
	15.12.6 GPIF Flowstate Registers
	15.12.7 GPIF Transaction Count Bytes
	15.12.8 Endpoint 2, 4, 6, 8 GPIF Flag Select
	15.12.9 Endpoint 2, 4, 6, and 8 GPIF Stop Transaction
	15.12.10 Endpoint 2, 4, 6, and 8 Slave FIFO GPIF Trigger
	15.12.11 GPIF Data High (16-Bit Mode)
	15.12.12 Read/Write GPIF Data LOW & Trigger Transaction
	15.12.13 Read GPIF Data LOW, No Transaction Trigger
	15.12.14 GPIF RDY Pin Configuration
	15.12.15 GPIF RDY Pin Status
	15.12.16 Abort GPIF Cycles

	15.13 Endpoint Buffers
	15.13.1 EP0 IN-OUT Buffer
	15.13.2 Endpoint 1-OUT Buffer
	15.13.3 Endpoint 1-IN Buffer
	15.13.4 Endpoint 2/Slave FIFO Buffer
	15.13.5 512-byte Endpoint 4/Slave FIFO Buffer
	15.13.6 512/1024-byte Endpoint 6/Slave FIFO Buffer
	15.13.7 512-byte Endpoint 8/Slave FIFO Buffer

	15.14 Synchronization Delay

	Appendix A
	Default Descriptors for Full Speed Mode

	Appendix B
	Default Descriptors for High Speed Mode

	Appendix C
	Register Summary

